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» The hard problem of correlated electrons
» Beyond the QP picture

1 Many body perturbation theory QsGW  DMFT
Ladder diagrams : dominant \ j
correction to GW in charge channel QSGW

Low order WRPA — WABSE seems remarkably
accurate, unless spin fluctuations are strong

2 Assume strong correlations mostly local (DMFT)

Partition hamiltonian into strongly correlated, local
sector, and a weakly correlated nonlocal sector

Solve embedded local problem to all orders (CTQMC)
in a QSGW bath.



One-Body Hamiltonian as basis for Many-Body Theory

Pairwise interaction in Schroedinger’ s equation

H = T + T;luc + I/el el + I/el -nuc + Vnuc—nuc
Z,/, e’
H = +
2 ‘ 2m ! 2M ; I, — ‘ i gj |R RJ|

= independent particle ¥ ~ y,(r)) X y,(r,) X ... X w(ry) is a fiction.
Screening makes the interaction weak = saves the day for

independent (quasi)particle description.
GW --- a perturbative correction to IP --- is very successful.

* When correlations become strong, the QP picture fails and
The perturbative approach becomes problematic.

* Typically only a part of the entire system is strongly
correlated. For a workable scheme we must partition H.

* Treat low-level correlations globally, strong correlations locally



Scattering smears out Quasiparticle Levels

E (eV)r— Nonlnteractlng Fe s \ Interacting Fe
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Broadening from i/
interactions

Broadening from alloy
scattering —
No unique definition of

noninteracting H, ... but
QSGW optimal by construction |




Going Beyond the 1-particle Picture

See book by Richard Martin, Lucia Reining and David Ceperly.

Path I. Many Body Perturbation Theory (GW, FLEX).

M Excellent for weak and moderate correlations
Extending beyond the lowest order is a formidable task

Path II. Nonperturbative Solution on subspace (DMFT)

Usually ... for only a few degrees of »G*‘_‘“ <
freedom (e.g. d orbitals on some

|
L ) |
transition metals) are correlations MEPT : OMET
strong. Pert ‘ Nonpert
Nonlocal Local

QSGW

M Select a subspace to handle at a higher level of approximation.

Requires a partitioning where local, correlated subsystem are
treated differently ... ambiguities result

Work on Matsubara (imaginary frequency) axis



Partitioning the Hamiltonian

How to decide on what the subsystem should be is a subtle
(and not fully resolved) issue.

Some general considerations:

Partition a Hamiltonian H into “Subsystem” and “Rest.”

Hss Hsr SpeCTrum fr'Om Hss HS” ¢S — ¢S\
H= g oo eigenvalues of H H, H, |9 ¢ 9 )

¢, and ¢_are related by: ¢ =(H,—w)H 4,

Substitute this relation to obtain an equation for ¢_alone:
H, ()¢, =g, where H =H —H, (H,-o)H,

* Note that A is o- dependent, even if H is not.



Partitioning the Green’ s function
The Green’ s function is related to the inverse of H.

a)_HSS HSI" GSS GSF . ]
HI’S a)_Hl"l" GI’S GI"I" -
The poles of G coincide with the eigenvalues of H.

Use the same trick as before to obtain an expression for G,
GSS (a)) - [w_HSS _HSV (Hl"l" o a))HI"S ]_1

Gl (w)=[w—H,]T"

S

G, (@) =[o-H,]"

rr

Writeas G,=[(G))"'-H G H_ ' where {

Call the interaction with the rest a self-energy . :
G,=l(G)" -2, (@] where X =H,G.H

Sr rr rs

Called a self-energy because the subsystem interacts with
itself through its interaction with the rest of the system.



Some observations
Gss - [(va )_1 _Z"res‘[(a))]_1 Wher'e Zres’[ — H GO Hrs

Sr rr

2 .ot dresses” the subsystem through an w-dependent
interaction with the “rest.”

G can be also be written as

: G =G +GX G
a Dyson equation o

Subsystems
The full many-body Hamiltonian is w-independent. The
noninteracting, or 1-body Green’ s approximation to it may be
thought of as the "rest” and the residual interactions form
the subsystem. Z ., is w- dependent and “dressing” the
electron from screening by the other electrons.

We cannot solve the full problem exactly, and must make
approximations. The smaller Z ., is (especially, the smaller its
w- dependence), the better the approximation.



Mixed Approximations

The Dyson form is particularly useful because we can partition
Z as a sum X=X+ ¥ The Dyson equation can be carried out

In Two STZPS GOV =GO + gOTOGM

G? =GV + GOy G

>(D'can be a low-level approximation, e.g. Hartree Fock, GW, or
Density-Functional theory applied all the electrons, carried out

self-consistently; and X® a high-level theory (DMFT or a higher-
order diagrammatic method), on a subspace.

‘DMFT may be thought of as a (nearly) exact method of
obtaining G® for a given GV (all the local graphs are summed).

*The better XV is, the smaller X®-%2( feedback. If (D already
fairly good, it may enough to calculate X? in a single shot,
without updating XV



Spectral representation of G,

Construct G, from , LX) (x)
eigenfunctions of H,: Gy (XX, 0) = st—e +isgn(e — W)o

u Poles below E. in
R ¢ ¢ ¢.¢ ¢ SN atatetatatatl ety bottom half of

complex plane; poles
above in top half.

The Spectral weight ;oS e
function defined:  A®X.@=2 [0 f X)d(@-¢)

’ 1 ’
Easy to show that 4 and  A(X, X, @)= — [ ImG(x,X, )|

G are related ,
. . , A, X, w)dw
A is the density-of- G(xX.X,0) :I /
w— @
states ¢




Meaning of Quasiparticles, Interacting Case

Project G onto 1-particle states |G.(®) = <l//k(X)‘ G(x,x’,w)‘l//k,(x’)>

If non-interacting particles, 4 —S(e —
£.(x) = w,(x) and then (@)= 008, =)

But the interacting Green’ s function includes self-energy

Gy@)=Y, ——

‘w—€,—X (0)
This broadens out the sharp pole A (w)

Example: Ek(UJ) = Ak — 'y

Gk(t) = —1 exp [—’i(ék —+ Ak)t] exp (—Fkt)
Energy of excitation shifts \
from non-interacting &, and decays: finite lifetime




Introduction to the Hybridization function

To see how a subsystem interacts with a host, consider a
simple noninteracting case.

Let the subsystem be a single state with energy ¢, coupled to a
set of states m=1...N with eigenvalues ¢,, . State s couples to
state m with hopping matrix element H,.

.. H (G,)is a 1x1 matrix, while H,, (G,,) is a 1xN matrix.

Using the coupled-G (0-€)G, - "H, G, =1
formalism, we obtain (- )G ~H G =0
And
1 vH H
G Q) = . 2 — sm”_~ ms
»(@) (w-¢,-%_ () with *.(@=2, w—€,

2 .t IS The effect of the "rest” on to the subsystem. Inin
Dynamical Mean Field theory, 2 is called the
“hybridization function™ A.



Effect of the Hybridization function

A is a special instance of 2, where the subsystem couples
to a noninteracting bath. In general the bath need not be
interacting, but it is usually taken to be so in practice.

Write 1 vH H
G, ()= (@—¢. — M) with Alw)= Zm TES
Suppose “rest” is a single-band (&)
tight-binding model with hopping  A(w)=||[de P
matrix element A =t. A becomes “v-e

If further po(¢) — constant, A — —ix p|t|*> and

A(w) = —lG (w) = o A|
T (0—g,) +|Al

Lorentzian

Density-of-states

A(w) is the density-of states. What started as a sharp pole in
the isolated state gets broadened = finite lifetime.



Frequency-dependent Self-Energy

Even for this noninteracting system G (@) = I

the self-energy is w-dependent : (0—-¢, - A(w))
Consider a more general case of an extended system. Partition
the problem into a reference noninteracting hamiltonian given
by a static self-energy V_(k). The interacting system has a self-
energy 2(k o) .

Write the contribution . - 1
to G from QP statej as Gl @)= w—a’ -3 (k,w)+V’ (k)
Linearize Z(k,w) near the pole X(k,w)=%(k, @)+ (k0 )(w- ')
@ =2(k,@)+(1=(Z') o-o)
NN
Replace ReZ with the linearized Definition of the Z factor:
2 and call the resulting G the (1-(2')") =0/ (k,w) / ded| |

“coherent part” G of G (next) Terms «w : 1-(1-Z) = 7"



Loss of Quasiparticle Weight

Rear'r'(lnge Gj,coh (k a)) — Z
terms ’ (0—@')—ZReX(k, ')+ ZV! (k) —iZ ImZ(k, w)

Define the QP peak as the value o™ of @ where the real part of
the denominator vanishes. . _ + 77 (ReS(k,0) V., (K))

2 shifts o™ ... but the shift w™w/ depends on the reference V..
The better the V. the smaller the shift (it is zero in
quasiparticle self-consistent construction!)

ImZ broadens the pole at o™ . JI\

The w-dependence of ReZ reduces
the strength of the pole by Z. QP

weight gets redistributed into e
incoherent parts of the spectrum, B :

such as Hubbard sidebands or plasmon Interacting DOS

satellites.

Fe

—- Noninteracting DOS



Quasiparticle Lifetime

Fourier transform G w) into

coh (N _ +rz_—iw t—(Z|Im3|)t
the time domain : & 0=

The quasiparticle decays into a continuum of infinitely closely
spaced excitations near o". The lifetime is given by ImZ.

The corresponding spectral function 4" is broadened by 2 .

. 7/ Z'ITmZ(k,w
A ()= *\2 E ) 2 r
T (w—w) +(Z'ImX(k,w)) |
2 can have lots of structure ... Mé/m: .

transfer of QP weight can resultin

new peaks at plasmon or Hubbard o et

satellites. Iz |
7

Near E.or y, |ImZ| ~ (w* — u)? ‘\m/_h__“mu_:h—eexm
Y ‘

for a normal Fermi liquid ...
Lifetime r — o approaching E,. e




Mass Renormalization
The QP peak position is
modified by ReX —V__:
The group velocity is dw’/dk. do do' d
: . o == +—Z
For the interacting case itis  ak  dk

The ratio my/m™ = (dw’/dk)/(dw //dk) ... the “renormalization of
effective mass” is often taken to be a measure of correlation.

This is a nebulous concept, because it depends on the choice of
noninteracting reference V . Still, it emphasizes that both the
k- and w - dependence of 2 modify the QP band dispersions.

Consider a reference V. constructed from a purely static
theory, e.g. Hartree-Fock or DFT. Easy to show that

® = +Z' (ReZ(k, ')~V (k))

(ReX(k, @) -V (k))

*

dw da’ . 0 | |
Important E=Z"E+Z’a—k(ReZ(k,a)’)—Kfc(k))
when AN N e —N

. Always important;
correlations __» ¢)-dependence  k-dependence »— gee PRL 109, 237010
are strong



Diagram for W in the RPA

We saw how the RPA screening charge can be represented as a
geometric series

5q /8¢ = Z5q / 8¢ = 1+vPO+vP°vPO P 1 vPO P, P =GG"

- @@

which yielded ¢! and W.
The diagram for W is the series of "bubbles” linked by v:

o O
o



GW as Screened Hartree Fock

Hartree Fock: e~ senses an attractive potential V, owing to
correlated motion originating from antisymmetry that keeps e-
apart. Note: “correlation” is usually used as a term of art that
means correlated motion not captured by Hartree Fock!

Write V., in terms of Green's functions:
1

3 .
- d’r’' =iGv
r—r

2 =V (r)= iJ G(r,r’)

GW: bare coulomb v — dynamically screened W:
1

sW(r,xy',w)=¢"'v; T=iGW
r—r

Vbare (r’ r,) -

Dynamical screening is the essential difference between GW
and Hartree Fock. I+ make both qualitative and quantitative
changes to the electronic structure.



Quasiparticle self-consistent GW Approximation

Remember : there is no unique definition of H,.

Can we find a good starting point H, in place of A*°*? How
to find the best possible H,?

Requires a prescription for minimizing the difference
between the full hamiltonian /# and H.,.

QSGW : a self-consistent perturbation theory where self-
consistency determines the best H,(within the GW
approximation) PRL 96, 226402 (2006)

.. Different principle than energy minimization.



QSGW: a self-consistent perturbation theory

Partition H into H, + AV and (noninteracting + residual)
in such a way as to minimize AJ:

1 GWA . _ 1

- w-H, w—(H,+AV(w))
G satisfies (@ —(H,+AV(0)))G(@)=8(r—1”)

G_

0

We seek the G (w) that most closely satisfies Eqn. of motion
(w—(H,+AV(®)))Gy(®) = 5(r—r")
- AV (0)G,(w) =0

If the GWA is meaningful, G, =~ G
Q: How to find G, that minimizes A G, ?



Optimal G,

Start with some trial V. (e.g. from LDA, or ..). Defines G, :

H, = _—1V2 +V@)+ V() +V(xr,r)
ﬁ 2m
Hol//l. — El.l//l. — GO(I‘,I',,G)) — Zi l//z(r)lljl (r )

a)—El_

GWA determines A) and thus H:
G,— 5 e(iG,G ) — A 5(r ', 0) = iGW; AV =T-V*

0

Find a new 7*¢ that minimizes norm VN, a measure of AV G,

1 .
X — Re(>(E. S(E | (Qppf'OleGTe) PZSUIT
2§'<w’| e( (£ + 2 f))“”f} of min N

k Iterate to self-consistency.

| At self-consistency, £, of G matches £, of G, (real part).




Ambiguities in GW from starting point

GW is true ab initio (unlike many extensions to the LDA),

3[#Ex; 4 but GW is perturbation around H,
7.6 _—:ggg({g N 4 e With freedom fto those H,, ambiguities
721 A , o o = not really ab initio any more.

6.8 6 ‘ ¢ $
6.4 ® IPEV)  Example: TM & TM-O dimer

E®_EO)
6r.®. ., . .. .. .. . From RPA total energy calculate:

Sc Ti V Cr Mn Fe Ionization potential

_) pr————r— —
N ¢ 6 o Tm-0O heat of reaction

! & 5 Compare three choices for starting H:
_:-_ . ; e Hartree Fock * HSEOQ6 * QSGW
slo @ AE (eV) QSGW: optimal path of adiabatic
R - $ TmiO—=TmO connection within given level of

approximation ... best on average.
Also removes ambiguities in starting point dependence



True self-consistent GW

— 3 | — — 1
G=>P=-iGG=W=v=2=IGW =G= T ETThE
N 4
2—Vxc

Starting-point dependence can be also \19
surmounted by making G self-consistent //
—> Based on Luttinger-Ward functional.

- Keeps symmeftry for G
—> Conserving approximation

But ..
& strongly violates fsum rule [Tamme, PRL '99]
P loses its usual meaning as derivative on/oV

B. Holm and U. von Barth, PRB57, 2108 (1998) suggest it might be
justified on empirical grounds, if it makes a better G.

1))

But poor in practice, even for the electron gas



Bandwidths in scGW

0.4 N ——
Holm and von Barth compared | [
sc6W to G'W" in the /
homogeneous electron gas. 02| VA
04 - ‘. //

0 1 < 2
The G’ bandwidth narro::vs W 06 | G{{W0 " PRBS57,2108
by "’10 /o. o8 A /// (1998) j

4
."/

The scGIW bandwidth widens ... X .
12 Pq 4
by ~20% (30% error) J\ . oninteracting

0.6 0.8 1.0 1.2

Spectral functions in
real materials broaden
too much and get
washed out. Fares
worse than LDA.

Lo a4 ow
T e T e e

1
N
T

From Belashchenko et al, PRB 73, 073105



Z-factor cancellation

Exact 2=iGWI'. Suppose IV is exact. Then
1

O—Hy |V +3(@)+(02/0w), (0-,) |+i
Z=(1-3/9m) ' —
Residual of this pole (loss of QP weight) is reduced by Z
Write G as G = ZG’ + (incoherent part) Ward identity

.". GWT = G'W + (incoherent part) TI'—=Z~"' forqg’,w” — 0

G =

Similar argument for . Ishii et al (arxiv 1003.3342)
reverses argument: find I" that satisfies Ward Identity

Gp+a)” —CG()™  Results from GW Ty,
GD(;;Jrq]_l — G[.(p)_l similar to G W,

Pwilp.p+q) =



Need for Self-Consistency even in sp Systems

Cu(In,Ga)Se, :
drpose# degse - but hard
to measure (disorder)

GLPAWLDA gap ~ 0 10 0.2 eV
depending on (unkown) d;, ...
Experimental gap ~1 eV

What about hybrid
functionals, or LDA+U? ,
Strong interplay between

gap, dielectric response. % B
Self-consistency essential ="'[ /¥
to properly describe it. o //
Vidal et al, PRL 104, o(/
056401 (2010) [

0.2 0.22 0.24

x-coordinate

<

ZnO:Al

i-ZnO

CdS
Cu(In.Gajse,
Mo

glass

I
&—® DFT-LDA
= = corrected DFT
i 'l—l' G()W()
sc-COHSEX

s x sc-COHSEX+G,W,

| ' |
s—x sc-COHSEX+G W,

| V=¥ HSE06
\var 74 HSEO6+80




Dual Nature of QS&W . framework for H,

QSG& W generates a nearly optimal H, for many kinds of materials
classes ... often sufficient in itself

pu=n =

f

h

Z < — ‘/\_/
' B T T T D A S I S S TR I S S T R

=

Fe/MgO tunnel junction,
0-bias anomaly (PRB
85, 174433

I

N -04 -0.2 0 02 04E-E,

QSGW is key for distinguishing between properties accessible
to a 1-particle picture (if optimally chosen), and true many-body
effects that cannot be described by one Slater Determinant.



QSGW description of many body physics

QSGW also generates an interacting G with dynamical, many-
body effects. It sometimes works very well ...

Impact SPFH waves, NiO ARPES, Fe

L] L] L] l /\
N e emt. / \NiO I
Ionl ZG'“On, Zns 300- X +(_)\SI‘GW / \ ] |
* \——LDA | \ k=0 7\
1e+15 . . . W% W (] \ \ e
h r \ T fJ R ]
o ““\ //’ “

1e+14
1e+13
200
1e+12
1e+11
1e+10

1e+09

1e+08

But GW is too simple ... only real many-body effect come from
plasmons in the charge channel.

QSGW is a way to choose the optimum basis set for many-body
physics ... strongly affects relative importance of diagrams.



What GW does well (I)

--- No simple answer because:

« scGW is poor for spectral properties (much better for
total energy; see Kutepov et al, PRB 80, 041103R),

 Starting-point dependence of G, 7, = ambiquities

QSGW offers perhaps the most sensible path to eliminate
ambiguities, and elucidate strengths and weaknesses in GW

1: van der Waals interactions are built into the 2" order
bubble (missing in LDA, DMFT)

- O .
------- U



What GW does well (IT)

2. Nonlocal correlation in the polarization.

Example: The benzene energy gap is predicted to be
strongly renormalized from 10.5 eV (gas phase) when put

on graphite (7.2 eV).

Basically like an image
force.

Although correlation
relatively weak in this
case --- modification of
the screening has a big
effect

vacuum

E Affinity Level

P

Fermi €
Energy —
Py

lonization Level
q
metal adsorbed gas phase z

molecule molecule

Neaton, Hybertsen and Louie,
PRL 97, 216405



What GW does well (ITI)

3. Nonlocal correlation in the self-energy.
DFT gaps are too small because potential is local.

Choices: (1) make do with nonanalytic

V.. (problematic) or

(2) allow nonlocality in the potential (practical). Most
methods that resolve the bandgap problem put in some

form of nonlocality. GW does it in a natural way.

8 T

calculated gap (eV)
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PRL 96, 226402 (2006)
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What GW does well (IV)

4. level alignments generally very good.

Example: Fe/MgO/Fe tunnel junctions
(Tunneling Magnetoresistance: basis for
modern read heads.)

mi 7 Anply I/ > Fe

7, SIS
K Y I
" 5 oty
4
s
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Calculated ¢

Where does QSGW Break Down?

Unoccupied states universally too high
v'~0.2 eV for sp semicond;
v<~1eV for itinerant d SrTiO;, TiO,
v'>~1eV for less itinerant d NiO
v~3 eV forf Gd,Er,Yb

Peaks in Im &(w) universally Yoo high

l6 L oGW ) N .
oW 2 €., universally
nk cz“s’o 20% too
s 9
Qgu® m .~ Y @

1 §:§ " ?f, n small. §
> e @fla8 8 | Errorsareall &
2gnizd lated!

At 5. S 4 related!

/# 85253
7o 22 ©
0k O i O = -
] |§)Ig<-?:§ll< | 1 ] ]
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Experimental €
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Quasiparticle Self-Consistency for NiO

T 16 o ~_
4| B

i ”/\//k?\

QSGW 3\ g1 ! I |
28 = AR
rv “Fm%_ C i | |
BIS
T = T A AT J. Phys. Cond. Matt. 20, 95214
s g © X I L U

Spin waves in MnO and NiO
very well described. True ab
initio, all electrons on same
footing.

NiO looks ok, but gaps too big!
(clear marker of RPA

overestimating W)



Largest Error: missing diagrams in W

A blue shift in the plasmon peak has effect on Re[¢(0)]
(Kramer's Kronig relation). Approximate peak by 5-fn:

ARGL(O)—;JF(G)(O ®,) O - | exp)}dwzl(l 1 ]<O

@ T|\w, o

€X

e, Yoo small because of b/ue shifts in plasmon peaks.
The RPA approximation for the (
polarizability P =iG,xG,, misses screening G
channels, especially:

G;>

0

e and h* are attracted via W, e.q. by ladder diagrams,

G~ O @D D+

(Ladders needed for good optical spec’rm)

Conclusion: 7 calculated via RPA is too large, by 25% at w=0.




Ox
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0

Takeaway message: GWBSE does a
stellar job at describing electronic
structure in many kinds of
materials, provided spin
fluctuations are not too strong

- —— BSE

Consequences of WRPA — Jy/BSE

Cunningham's work; he will talk about this fomorrow
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QSGW and Transition Metals

2re Ay QOOW i Vast o in 3d series
{ Improvement .
over LDA for ol 8 8 d bandwidth (eV)
TM in general. °f e o
T CIExpt @ ®
R i .
But for Ni, L Q%Y
problems L[ ARV o :
appear 121 o
il B o
Calculated AE,: "'} ecw 0

X QSGW LDA Ti (er Fle Clo I\}i

WRFA is screened 0.76 071 QSGW misses a
in the charge Calculated M: satellite at -6
channel only ... no QSGW LDA eV seen in

spin fluctuations. 0.76  0.60 photoemission



w M (Calc)

0’

Spin Fluctuations

In Ni spin fluctuations are important (Nolting et al, 1989)
Quite generally, QSGW appears to:

» predict M in local-moment systems very well

- overestimate M in itinerant systems.

=L DA .
e QSGW
i o
e .
- CaFe,As, Co Ql y jAS
l
- Vv -
8 gel}
i e g CoPt
FeAl
)
i 'V\Nl NS
.NKI.\JEAII L | )
0 1 2 3 M (Expt)

LDA has two distinct errors:
(M) is too large in itinerant
materials.

(M) is too small in local-
moment systems (CoPt, MnAs)

In Ni the errors cancel ... {M)
is fortuitously good!

Spin fluctuations reduce {M). Moriya estimated {AM) from FD

theorem. Requires fdw Imy (Mazin et al PRL 2004).
.. Better fluctuations are built into higher order diagrams.




Spin Fluctuations in Fe are not important

QSGEW matches ARPES and inverse PE (Santoni & Himpsel,
Phys. Rev. B 1991) extremely well ...

E(CV) S s ' — H ﬁlﬂ_-lvjl(— — T |
) —fmin SN/ (a)
It | O
‘\0,0/
-1 4 % ‘ ; |
) A{ ‘ ~ " vind 10.3 |
a , ' r .
SN = L\ " g E_L_\-. — - 4 N
H N T P H r %o T
Much better than LDA+DMFT. Small discrepancies at ~0.1 eV

scale: ... But it furns out that differences are largely artifacts
of final-state effects in PEl See Phys. Rev. B 95, 041112(R)



FeSe: Strongly correlated unconventional SC
FeSe has no magnetic order. Start from nonmagnetic QSGW

Important role of SO Small QSGW bandwidths

L-S generates ~30 meV shifts

LDA — QSGW:
e~and h' pockets shift by ~100 meV
Bandwidths are reduced




Nonlocality in Self-Energy

Compare QSGW and LDA to ARPES

r M 7 A
LDA,nm |+109 +113|—204 —337|+254 +141|—208 —582
QSGW,nm | +41 +44|—107 —202|+131 +56|—113 —334
ARPES®**>™'| +9 —18| —22 —42| +7 +34| —16 —25
055l 2 = (1-0Z(k,0)0w) |;)1:p
GW has:

v Spatial nonlocality (r,r",») © _
v Nonlocality in 2(1.7',w) 0.45
v (but quasiparticlized)

But pockets at [ and M are
still too deep. Why?

0.35|




Simulate paramagnetism with SQS6 structure

Spin Fluctuations in FeSe

A low moment QSGW solution can be
stabilized with (M)»=0.2+0.15 .

Levels shift towards ARPES data, but still
significant discrepancy.

T M Z A
LDA,nm |+109 +113|—204 —337|4254 +141|—208 —582
QSGW,nm| +41 +44|—107 —202|4+131 +56|—113 —334
SQS6 | +45 (60)| —52 —70| +31 +68| —59 —72
ARPES | +9 -—18] —22 —42| +7 +34] —16 —-25

Shows spin fluctuations are important but (QS)GW does

not adequately capture them.

Use DMFT to get higher order diagrams in spin channel

O



Generic approach to strong correlations: partitioning

A universal theory that handles all electrons on an even footing
is not feasible. So .. we do higher level physics in subspace
where correlations are strong. What is required?

1. A starting noninteracting hamiltonian (or G°) with a family
of states {i} and a subspace of it

2. We saw that we could partition G into a subspace G, and the
“rest”, and that the effect of the “rest” on G, can be cast
in terms of a self-energy

G =G’ +G’E_G

ssorest T ss

3. We need the effective interaction //*" in the subspace.
This defines the effective local hamiltonian. Solve ~exactly.

4. If the subspace were the full space, 7*" would be just the
bare Coulomb v. If you could ,
W would be a byproduct of calculation ... but not feasible.



Dyson Equation for W
Remember that we developed a formula for 7 in the RPA.
W=»1-vP")Y'v=¢T
This formula carries over to the exact many-body system with
a suitable redefinition of P (see Myrta's talk).
W can be equivalently expressed as a Dyson equation
W=(0-vP)'v=v+vPW

If P is divided into separate contributions P= P+ P, then
W can be similarly partitioned o) _ . sopo

W = O p@py2)

So ... if W is W from a low-level theory like GI7, we can
calculate W@ if we can calculate P®. We will see that P® can
be obtained from a pair correlation function.

Note: no one actually does this today, but it tells you what to
do in principle. For now, we just choose a local U, J.



General Framework for the Many-Body Problem

Partition using the "dual Dyson equation” for G and W
G(l) — G(O) + G(O)Z(I)G(l) W(l) — V+VP(1)W(1)
G(Z) — G(l) + G(1)2(2)G(2) W(2) — W(l) + W(I)P(2)W(2)

Treat entire system at a low level approximation (for
definiteness, take low level approximation as GW) and deal

with the interactions of a subsystem at a higher level.
NOT@ G(Z) :G(l)+G(1)2(2)G(1)+G(1)z(2)G(1)Z(2)G(1)_I_m

0. Begin with a noninteracting H, = G = w - H,
Make P and Z()and for the entire system.
+ At the GW level, P — P°= G°G® and ) — iG W
+ This defines an initial GV =(w - H,— M)
* Note: this is typically performed in k-space .

For us, this is just a standard QSGW calc. (Could be LDA)



Framework IT

1. Choose a subspace, defined by one-particle orbitals |;.

Make the projection of G, P, WD onto this subspace, e.g.
projections G, = i|Glj2, W, = ij|WIkl}, P, = <ijlPkl)
For the Questaal code, subspace = d or f partial waves

2. Build the effective interaction Uy, for the subspace.
Recall relation between W and polarizability P:

W=(1-vP)'v=oW ' '=v'—-P=yv'=W'+P

Full 3y51'em view e p P r.emoves
screening from W

Partition P into P=P + P,,. Remove P, part of screening

rest
in W, to get effective interaction partially screened by the
“rest”’ Partially unscreened interaction is customarily called U.
U'=W_'!=W_+P

rest ' ijkl ijkl



Framework IIT

3. G,V and UV define the many-body hamiltonian for the
system. Use a high-level solver (e.g. CTQMC) to obtain Zl.j@)
and G;@ =(G,(V =X, @)

4. (Almost never done in practice, but possible in principle).
Update full system P and W in full space

Get improved.local P, from DMFT so we have thrée quantities:

PD  Polarizability-ef whole system at low-ievel, eg. GW, approx
PO, projection of AV onfo-subsystem
Py, A better calculation-of P in~the_subsystem.

Improve the system P with the constructio
P(lnewy — P(l,old) + Pijkl_ P(I’OId)ijkl
Frem P(new), obtain Wnew) from Dysons equation for W.



Framework IV

5. Determine a better T to determine a new G.
3 (1,new) — 2(1,old) + 3 - z(l,old)

6. Wn prac’rlce but possuble in principle). —

Update the low-leve er G to make GW.
Iterate—the parts or all of the cycle: The pair (%,

successively refined

Approximately this procedure was outlined in Phys Rev Lett
90, 086402 (Aryasetiawan, Biermann and Georges)
Standard practice today: LDA+DMFT: X (D=} LDA

Questaal partially implements QSGW+DMFT.

New ability to calculate 2-particle properties with local two-
particle vertex + BSE.

Basic formalism still evolving



QSGW loop

| Ezjk ( ) —‘|'
Hgfcu Vi = gg(scu i
1 SGw GW | QSGW/ | GV | QSGW
ng _R [Buk 8k ) Eka ( ?Jk )
\ 4
! . DMFT loo
e ZU""[ Tk Zu*( - 506, () - 12) U’”] vk and E}7Y ’
ik
A A
' cRPA procedures
l A LL’ (w) &
D ]
o 2 L IS:; N U 1
CTQMC




FeSe, QSGW+DMFT
With QSGW as a bath, DMFT describes ARPES very well!

r M y/ A
LDAnm |+109 +113|—-204 —337|+254 +141|—208 —582
LDA+DMFT| +30 +45|—110 —125| +42 +65|—112 —128
QSGW,nm | +41 +44|—107 —202|+131 +56|—113 —334
nm+DMFT | +1 +10| —21 —40| +10 +32| —22 -35
ARPES 19 —18| —22 —42| +7 +34] —16 —25

LDA+DMFT is not adequate because errors propagate to the
DMFT solver via deficiencies in the hybridization function.

< LDA+DMFT
QSGW+DMFT > |




QSGW + Magnetic DMFT, Applied to Ni

Basic idea : combine
charge Z56V(k) with

spin  IPMFT(g))

Zi — iQSGW(k) 4+ ZDMFT,i (a))

SN = SNk + 27 (k)]/ 2
IOVFTE = S (@) — 2 (w)]/ 2

LDA
QSG6W
QSGW+DMFT

AEX

0.71
0.76
0.3

QSGW+DMFT(QP) 0.3

Experiment

0.3

M.

0.60
0.76
0.51
0.55
0.57

2 LN B B T 1T rJ1 rJ1 rr17°
‘) /
+ -

Exchange splitting
well described by QP

Self-consistency has
minimal effect



Summary

» QSGW: use GW to generate effective noninteracting
hamiltonian H, to use in diagrammatic theory.

No unique choice. Density-Functional theory is popular,
but QSGW is an optimum choice by construction.

Dramatically improves quality of GW, but also limits.

» When spin fluctuations are weak: QSGW  DMFT
RPA+ladders work very well! \ j
» When spin fluctuations are strong: QSGW

Many diagrams are needed, but they are mostly local.
Requires nonperturbative but local approach

» Use partitioning and combine QSGW+DMFT
Best approach to strong correlations to date.

Nonlocality restored perturbatively via diagrams
connecting local vertex.



Aside : About diagrams

Feynman Diagrams are a convenient pictorial way to represent
complicated chains of processes. Widely used in many-body
perturbation theory

! 2 G(Xy,t1;%,5,) The arrow represents the flow of time

A thick or double line used for an
inferacting G and thin line for G°

1

----- V(X,;X,) The bare coulomb interaction |x —x, [
is taken to be instantaneous

AN W) The screened coulomb interaction.
PrR2t2’ W depends one time, ¢,— t,.

Exchange Gv GW J‘\/\/\—-,

’——




Alternative Justification of QSGW

Original justification for QSGW: find the G, which miminizes
difference {G—G,», according to some definition of ...}, within
the GIW approximation.

Why not just find G, that §gR™ Not possible ... there is
minimizes the RPA total ~ —5~—=0 no lower bound
energy ER™ ? 0 (PRB76, 165106).

A justification based on energy minimization
Minimize square of gradient of Klein

energy functional (Ismail-Beigi) Z_V/X‘;A g

OF[G
‘D‘zﬁmin where D= 6[20]

1)

J. Phys. Cond. Matt. 29, 385501



Compare QSGWRPA QSGWESE bands to BIS in NiO

Cunningham's work; he will talk about this fomorrow

|l|/§r 16n.|

NiO has both dispersive
sp bands

WRPA __,\\/BSE _,
-0.3 eV shift
--» and a flat d band

WRPA wesEs D

-1 eV shift

Shifts get reflected in
movement of DOS peaks

(1), (2). (3)
Compare to BIS -



