
Accurate Description of Correlated Materials	

Ø The hard problem of correlated electrons

Ø Beyond the QP picture 


1  Many body perturbation theory

 
Ladder diagrams : dominant                                                 

correction  to GW in charge channel


Low order WRPA →WBSE seems remarkably                
accurate, unless spin fluctuations are strong


2  Assume strong correlations mostly local (DMFT)


Partition hamiltonian into strongly correlated, local 
sector, and a weakly correlated nonlocal  sector


Solve embedded local problem to all orders (CTQMC) 
in a QSGW bath.
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QSGW	

QSGŴ	 DMFT	



One-Body Hamiltonian as basis for Many-Body Theory 	
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⇒ independent particle Ψ ~ ψ1(r1) × ψ2(r2) × … × ψN(rN) is a fiction.  

Screening makes the interaction weak ⇒ saves the day for 
independent (quasi)particle description.                                             
GW --- a perturbative correction to IP --- is very successful.

•  When correlations become strong, the QP picture fails and      

The perturbative approach becomes problematic.

•  Typically only a part of the entire system is strongly 

correlated.  For a workable scheme we must partition H.

•  Treat low-level correlations globally, strong correlations locally


Pairwise interaction in Schroedinger’s equation 



Scattering smears out Quasiparticle Levels	

Noninteracting Fe Interacting Fe 

Noninteracting Ni0.8Fe0.2 Broadening from e––e–   
interactions

Broadening from alloy 
scattering


No unique definition of 
noninteracting H0 … but 
QSGW optimal by construction




Going Beyond the 1-particle Picture 	

Path I. Many Body Perturbation Theory (GW, FLEX).  

þ Excellent for weak and moderate correlations 

ý Extending beyond the lowest order is a formidable task


See book by Richard Martin, Lucia Reining and David Ceperly.  


Usually … for only a few degrees of 
freedom (e.g. d orbitals on some 
transition metals) are correlations 
strong.


Path II. Nonperturbative Solution on subspace (DMFT)











þ Select a subspace to handle at a higher level of approximation.   

ý Requires a partitioning where local, correlated subsystem are 
treated differently … ambiguities result

ý Work on Matsubara (imaginary frequency) axis




Partitioning the Hamiltonian 	
How to decide on what the subsystem should be is a subtle 
(and not fully resolved) issue.   
Some general considerations: 

Partition a Hamiltonian H into “Subsystem” and “Rest.” 
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Spectrum from 
eigenvalues of H 

ϕs and ϕr are related by: ( )r rr rs sH Hφ ω φ= −

Substitute this relation to obtain an equation for ϕs alone: 
ˆ ( )ss s sH ω φ ωφ= ˆ ( )ss ss sr rr rsH H H H Hω= − −where 

* Note that Ĥ  is ω- dependent, even if H is not. 



Partitioning the Green’s function 	
The Green’s function is related to the inverse of H. 
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Write as 

Use the same trick as before to obtain an expression for Gss   

Call the interaction with the rest a self-energy Σrest : 
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Called a self-energy because the subsystem interacts with 
itself through its interaction with the rest of the system. 

The poles of G coincide with the eigenvalues of H. 



Some observations 	

Σrest “dresses” the subsystem through an ω-dependent 
interaction with the “rest.” 

0 0
restss ss ss ssG G G G= + Σ

0 1 1
rest[( ) ( )]ss ssG G ω− −= −Σ where 0

rest sr rr rsH G HΣ =

The full many-body Hamiltonian is ω-independent. The 
noninteracting, or 1-body Green’s approximation to it may be 
thought of as the “rest” and the residual interactions form 
the  subsystem. Σrest is ω- dependent and “dressing” the 
electron from screening by the other electrons. 
We cannot solve the full problem exactly, and must make 
approximations.   The smaller Σrest is (especially, the smaller its 
ω- dependence), the better the approximation.  

G can be also be written as 
a Dyson equation 

Subsystems 



Mixed Approximations 	
The Dyson form is particularly useful because we can partition 
Σ as a sum Σ= Σ(1) + Σ(2).  The Dyson equation can be carried out 
in two steps (1) (0) (0) (1) (1)

(2) (1) (1) (2) (2)

G G G G
G G G G

= + Σ
= + Σ

• Σ(1) can be a low-level approximation, e.g. Hartree Fock, GW, or 
Density-Functional theory applied all the electrons, carried out 
self-consistently; and Σ(2) a high-level theory (DMFT or a higher-
order diagrammatic method), on a subspace.   
• DMFT may be thought of as a (nearly) exact method of 
obtaining G(2) for a given G(1) (all the local graphs are summed).  
• The better Σ(1) is, the smaller Σ(2)−Σ(1)  feedback. If Σ(1)  already 
fairly good, it may enough to calculate Σ(2) in a single shot, 
without updating Σ(1) . 



Spectral	representation of G0		
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G0(x, ′x ,ω ) =

fs(x) fs
*( ′x )

ω − ε s + isgn(ε s − µ)δs∑
Construct G0 from 
eigenfunctions of H0 : 

Easy to show that A and 
G are related 

A is the density-of-
states 
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The Spectral weight 
function defined: 
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A f fω δ ω ε′ ′= −∑x x x x

Poles below EF in 
bottom half of 
complex plane; poles 
above in top half. 



Meaning	of	Quasiparticles, Interacting Case 

But the interacting Green’s function includes self-energy	

Example:	

Energy	of	excitation	shifts	
from	non-interacting	εk  and	decays:	finite	lifetime	

Ak(ω)	

Project	G	onto	1-particle	states	

If non-interacting particles,  
fs(x) → ψk(x) and then		

This broadens out the sharp pole	

   Gk ′k (ω ) = ψ k (x) G(x, ′x ,ω )ψ ′k ( ′x )

  Akk (ω ) = δ (ε k −ω )

  
Gkk (ω ) = 1

ω − ε k − Σk (ω )s∑



Introduction to the Hybridization function 	
To see how a subsystem interacts with a host, consider a 
simple noninteracting case. 
Let the subsystem be a single state with energy εs coupled to a 
set of states m=1…N with eigenvalues εm .  State s couples to 
state m with hopping matrix element Hsm.   
… Hss (Gss) is a 1×1 matrix, while Hsm (Gsm) is a 1×N matrix. 
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Using the coupled-G 
formalism, we obtain 

Σrest is the effect of the “rest” on to the subsystem.  In in 
Dynamical Mean Field theory, Σrest is called the 
“hybridization function” Δ. 



Effect of the Hybridization function 	

Write 

2 ( )( ) t d ρ εω ε
ω ε

Δ =
−∫

Suppose “rest” is a single-band 
tight-binding model with hopping 

matrix element Hsm=t.  Δ becomes 
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Density-of-states 

Δ is a special instance of Σrest where the subsystem couples 
to a noninteracting bath.  In general the bath need not be 
interacting, but it is usually taken to be so in practice. 

If further ρ(ε) → constant, Δ → −iπ ρ|t|2  and 

A(ω) is the density-of states.  What started as a sharp pole in 
the isolated state gets broadened ⇒ finite lifetime. 
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Frequency-dependent Self-Energy 	

Consider a more general case of an extended system.  Partition 
the problem into a reference noninteracting hamiltonian given 
by a static self-energy Vxc(k). The interacting system has a self-
energy Σ(k,ω) .  
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Even for this noninteracting system 
the self-energy is ω-dependent 

Linearize Σ(k,ω) near the pole 
ω j 
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Definition of the Z factor: 

Write the contribution 
to G from QP state j as 

Replace ReΣ with the linearized 
Σ and call the resulting G the 
“coherent part” Gcoh of G (next) Terms ∝ω :  1 − (1−Z−1) = Z−1  



Loss of Quasiparticle Weight 	

Define the QP peak as the value ω* of ω  where the real part of 
the denominator vanishes.  

,coh ( , )
( Re ( , ) ( ) I , )) m (

j
j j j

xc

G k
Z k ZV k i k

Z
Z

ω
ω ω ω ω

=
− − Σ + − Σ

ImΣ broadens the pole at ω* . 
The ω-dependence of ReΣ  reduces 
the strength of the pole by Z . QP 
weight gets redistributed into 
incoherent parts of the spectrum, 
such as Hubbard sidebands or plasmon 
satellites. 

( )* Re ( , ) ( )j j j
xcZ k V kω ω ω= + Σ −

Σ shifts ω* …  but the shift ω*−ω j  depends on the reference Vxc. 
The better the Vxc the smaller the shift (it is zero in 
quasiparticle self-consistent construction!) 

Rearrange 
terms 

−− Interacting DOS  
−− Noninteracting DOS 

Fe 



Quasiparticle Lifetime 	

The quasiparticle decays into a continuum of infinitely closely 
spaced excitations near ω*. The lifetime is given by ImΣ.   
The corresponding spectral function Acoh is broadened by Σ . 

Fourier transform Gcoh(ω) into 
the time domain : 

*coh ( |Im |)( ) ~ i t Z tG t iZe ω− − Σ

,coh
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j
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Σ=
− + Σ

Σ can have lots of structure … 
transfer of QP weight can result in 
new peaks at plasmon or Hubbard 
satellites. 
Near EF or μ , |ImΣ| ~ (ω* − µ)2 

for a normal Fermi liquid …  
Lifetime τ → ∞ approaching EF. 



Mass Renormalization 	

The group velocity is dω*/dk.  
For the interacting case it is 

The QP peak position is 
modified by ReΣ − Vxc : 

( )
*

Re ( , ) ( )
j

j j j
xc

d d d
Z k V k

dk dk dk
ω ω ω= + Σ −

The ratio m0/m* = (dω*/dk)/(dω j/dk) … the “renormalization of 
effective mass” is often taken to be a measure of correlation. 
This is a nebulous concept, because it depends on the choice of 
noninteracting reference Vxc.  Still, it emphasizes that both the 
k- and ω - dependence of Σ modify the QP band dispersions. 

( )* Re ( , ) ( )j j j
xcZ k V kω ω ω= + Σ −
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j j j j
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d d
Z Z k V k

dk dk k
ω ω ω∂= + Σ −

∂

Consider a reference Vxc constructed from a purely static 
theory, e.g. Hartree-Fock or DFT.  Easy to show that 

ω-dependence k-dependence 
Always important; 
see PRL 109, 237010  

Important 
when 
correlations 
are strong 



We saw how the RPA screening charge can be represented as a 
geometric series 

Diagram for W in the RPA	

+ 

  
δq / δφ = δ

n
∑ qn / δφ = 1+ vP0 + vP0vP0 + ...( )P0 = 1− vP0( )−1

P0 ,    P0 = G0 G0

+ … 

which yielded ε−1 and W.   
The diagram for W is the series of “bubbles” linked by v: 



GW as Screened Hartree Fock	

Hartree Fock: e− senses an attractive potential Vx owing to 
correlated motion originating from antisymmetry that keeps e− 

apart.  Note: “correlation” is usually used as a term of art that 
means correlated motion not captured by Hartree Fock! 
Write Vx in terms of Green’s functions: 

   
Σx =Vx (r) = i G(r, ′r )

1
r − ′r

d 3 ′r∫ = iGv

   
Vbare (r, ′r ) = 1

r − ′r
→W (r, ′r ,ω ) = ε −1v;    Σ = iGW

GW: bare coulomb v → dynamically screened W: 

Dynamical screening is the essential difference between GW 
and Hartree Fock. It make both qualitative and quantitative 
changes to the electronic structure. 



Quasiparticle self-consistent GW Approximation 

Remember : there is no unique definition of H0. 
 
Can we find a good starting point H0 in place of HLDA ?  How 
to find the best possible H0 ? 
 
Requires a prescription for minimizing the difference 
between the full hamiltonian H and H0. 
 
QSGW : a self-consistent perturbation theory where self-
consistency determines the best H0 (within the GW 
approximation) PRL 96, 226402 (2006) 
 
… Different principle than energy minimization.  



QSGW: a self-consistent perturbation theory 

( )0
0 0

1 1
       

( )
GWAG G

H H Vω ω ω
= =

− − + Δ
⎯⎯⎯→

If the GWA is meaningful,  G0 ≈ G 

Partition H into H0 + ΔV and (noninteracting + residual)       
in such a way as to minimize ΔV : 

We seek the G0(ω) that most closely satisfies Eqn. of motion 

Q:  How to find G0 that minimizes  ΔV G0 ? 

( )0 0

0

 ( ( )) ( ) ( ')
                ( ) ( ) 0 

H V G
V G

ω ω ω δ
ω ω

− + Δ ≈ −
→Δ ≈

r r

    ω − (H0 + ΔV (ω ))( )G(ω )=δ (r − ′r ) G satisfies  



Optimal G0 

   

H0 =
−1
2m

∇2 +V ext (r) +V H (r) +V xc (r, ′r )

H0ψ i = Eiψ i ⎯→⎯ G0 (r, ′r ,ω ) =
ψ i (r)ψ i

*( ′r )
ω − Ei

i∑

Start with some trial Vxc  (e.g. from LDA, or …).  Defines G0 : 

GWA determines ΔV  and thus  H : 

   G0
RPA⎯ →⎯⎯ ε(iG0G0 ) GWA⎯ →⎯⎯ Σ(r, ′r ,ω ) = iG0W ;       ΔV = Σ −V xc

( )xc 1 |Re ( ) ( ) |
2 i i j j

ij
V E Eψ ψ= 〈 Σ +Σ 〉∑

Find a new Vxc that minimizes norm N, a measure of ΔV G0. 

(approximate) result 
of min N 

Iterate to self-consistency.  
At self-consistency, Ei of G matches Ei of G0 (real part).   



Ambiguities in GW from starting point  

With freedom to choose H0, ambiguities 
⇒ not really ab initio any more.


QSGW: optimal path of adiabatic 
connection within given level of 
approximation … best on average.


GW is true ab initio (unlike many extensions to the LDA), 


 
 
      … but GW is perturbation around H0


Example: TM & TM-O dimer

From RPA total energy calculate:

  Ionization potential

  Tm-O heat of reaction

Compare three choices for starting H0:

� Hartree Fock   � HSE06   � QSGW


Also removes ambiguities in starting point dependence





à Based on Luttinger-Ward functional. 


à Keeps symmetry for G


à Conserving approximation


True self-consistent GW	

  
G ⇒ P = −iGG ⇒W = ε −1v ⇒Σ = iGW ⇒ G = 1

ω−(T+V H+V ext+Σxc )

B. Holm and U. von Barth,  PRB57, 2108 (1998) suggest it might be 
justified on empirical grounds, if it makes a better G.  

Vxc 

Σ−Vxc 
Starting-point dependence can be also 
surmounted by making G self-consistent


But poor in practice, even for the electron gas


But ...

ε strongly violates f sum rule [Tamme, PRL ‘99]

P  loses its usual meaning as derivative δn/δV   



Bandwidths in scGW	

Holm and von Barth compared 
scGW to G0W0 in the 
homogeneous electron gas.  

Noninteracting 

G0W0 

GW 

PRB57, 2108 
(1998) 

The G0W0 bandwidth narrows 
by ~10%. 

The scGW  bandwidth widens 
by ~20% (30% error) 

Spectral functions in 
real materials broaden 

too much and get 
washed out. Fares 
worse than LDA. 

From Belashchenko et al, PRB 73, 073105 



Residual of this pole (loss of QP weight) is reduced by Z

Write G as 

Z-factor cancellation 
Exact Σ=iGWΓ.  Suppose W is exact.   Then 

( ) ( ) ( )
0

0 0 0

1
/xc

G
H V iωω ω ω ω ω δ

=
⎡ ⎤− − − +Σ + ∂Σ ∂ − +⎣ ⎦

0 (incoherent part)G ZG= +

  Γ→ Z −1     for ′q , ′ω → 00 (incoherent part)GW G WΓ ≈ +

( ) 11 /Z ω −= − ∂Σ ∂

Similar argument for W.  Ishii et al (arxiv 1003.3342) 
reverses argument: find Γ that satisfies Ward Identity 

∴ 
Ward identity 

Results from GW ΓWI 
similar to G0W0. 



Need for Self-Consistency even in sp Systems	

Cu(In,Ga)Se2 :  
dIn-Se ≠ dGa-Se …  but hard 
to measure (disorder) 

GLDAWLDA gap ~ 0 to 0.2 eV 
depending on (unkown) dIn-Se. 
Experimental gap ~1 eV 

simplistic to analyze the dependence of the band gap on u.
(ii) In spite of this problem, the local density (LDA) or the
generalized gradient (GGA) approximations to the ex-
change and correlation energy of DFT usually yield good
structural parameters of semiconductors and insulators.
Unfortunately, for CIS, the theoretical range of anion dis-
placements obtained within these approximations
(0:215< u< 0:220) lies outside the experimental range.
It is clear, thus, that to understand the paradox of the band
gap dependence on the unit cell deformations in CIS one
has to go beyond standard DFT.

In the past years, GW [9] has emerged as an invaluable
tool to access the one-electron addition and removal en-
ergies, also called quasiparticle energies. In principle, the
GW equations have to be solved self-consistently, as both
G, the one-particle Green’s function, and W, the screened
Coulomb interaction, depend on the quasiparticle wave
functions and energies. However, the standard use of this
theory, that we will refer to as G0W0, starts from a KS
calculation, and evaluates perturbatively the quasiparticle
corrections to the energy levels ignoring the self-consistent
process. This procedure is justified when the KS wave
functions and band structures are already close to the
quasiparticle ones. In that case it gives results in good
agreement with experiments [10].

In spite of the success of the G0W0 approach, it has
recently been proved that it is insufficient to describe the
physics of many materials containing localized d electrons,
such as transition metal oxides [11–13]. Several strategies
have been proposed to solve this problem, following two
main lines: (i) Replacing the LDA with a better starting
point, e.g., exact exchange [14], LDAþU [15], or hybrid-
functional approaches [16]; (ii) Using an approximate self-
consistent approach [12,13,17,18]. In this work we chose
to perform a self-consistent (sc) COHSEX (a static ap-
proximation to GW [9]) calculation, followed by a pertur-
bativeG0W0 step to include the dynamical effects absent in
the COHSEX calculation [18]. This method has given
excellent results for several transition metal compounds,
very close to the quasiparticle self-consistent GW method
of Refs. [11,17], retaining however a relative computa-
tional efficiency [18]. Furthermore, and unlike some of
the strategies listed in (i), our choice does not rely on any
nonuniversal parameter.

In this Letter we compare calculations of quasiparticle
gaps for a range of anion displacements, obtained from
state-of-the-art ab initio schemes. We performed standard
DFT and GW calculations within the plane-wave scheme
implemented in ABINIT [19], using norm-conserving pseu-
dopotentials [20] and including semicore states in the
valence. Our calculated LDA (and GGA) structural pa-
rameters and band structures agree with previous results
[6,21,22]: the anion displacement u is systematically
underestimated by 5%–10%, and the bottom conduction
band overlaps the top valence band, yielding negative band
gaps. The negative gap is due to the overestimation of the
p" d repulsion [23], which raises the valence band maxi-

mum (VBM) beyond the low lying conduction band mini-
mum (CBM), causing a significant hybridization of the
CBM with valence states close in energy. Values of u and
band gaps in agreement with experiments can be obtained
using the Heyd-Scuseria-Ernzerhof (HSE06) [24] hybrid
functional, as implemented in the Vienna ab initio simu-
lation package (VASP) [25,26]. In fact, the structural re-
laxation within this scheme yields u ¼ 0:229 (u ¼ 0:227)
for the ideal monocrystal of CuInS2 (CuInSe2). In real
samples, however, there is a dispersion of values of u. As
a first step, it is therefore most interesting to calculate and
analyze the evolution of the gaps as a function of u. To this
aim we use ab initio schemes that are designed to describe
excited states, namely, the GW approximation, as well as
hybrid functionals which are also known to yield reason-
able band gaps for solids. We varied u in the interval 0:2<
u< 0:25, that encompasses both experimental and theo-
retical ranges. After verifying that sensible variations of the
lattice parameters aand c produce negligible changes on
the band structure these parameters were fixed to their
experimental values [27]. In the following we will present
only calculations for CuInS2, as we found strictly analo-
gous results for CuInSe2.
The dependence on u of the band gap of CuInS2 is

shown in Fig. 1. We can see that our KS LDA curve
(magenta with filled circles) has the same slope as the
theoretical curve (dotted line) obtained by Jiang et al. [7]
using LDA corrected by a scissor operator. If we apply the
perturbative G0W0 approach on top of DFT (blue line with
crosses), bands are reordered, reversing the sign of the
band gap for u > 0:215. In any case, G0W0 gaps remain
quite small, and the slope of the curve do not change for
most of the u-range when compared to the KS results. The
slope of the G0W0 calculation increases when u ¼ 0:25,

0.2 0.22 0.24
u

0

1

2

3

E
g [e

V
]

DFT-LDA
corrected DFT
G0W0
sc-COHSEX
sc-COHSEX+G0W0

0.2 0.22 0.24
u

0

1

2

3
sc-COHSEX+G0W0
HSE06
HSE06+ε0

FIG. 1 (color online). Photoemission band gap vs the anion
displacement u for CuInS2. The vertical (horizontal) shaded
areas give the spread of experimental data for u (band gap).
Left panel: calculations using DFT-LDA, G0W0, sc-COHSEX,
and sc-COHSEXþG0W0. The dotted line is from Ref. [7].
Right panel: sc-COHSEXþG0W0 and calculations using
HSE06 and a modified HSE06 (see the text).
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Eg ⇡ 1.1 eV

•

What about hybrid 
functionals, or LDA+U? 
Strong interplay between 
gap, dielectric response.  
Self-consistency essential 
to properly describe it. 
Vidal et al, PRL 104, 
056401 (2010)  



Dual Nature of QSGW : framework for H0 
QSGW generates a nearly optimal H0 for many kinds of materials 
classes … often sufficient in itself 
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Fe/MgO tunnel junction, 
0-bias anomaly (PRB 

85, 174433 

QSGW is key for distinguishing between properties accessible 
to a 1-particle picture (if optimally chosen), and true many-body 
effects that cannot be described by one Slater Determinant. 



QSGW  description of many body physics 
QSGW also generates an interacting G with dynamical, many-
body effects.  It sometimes works very well … 

Spin waves, NiO ARPES, Fe 

But GW is too simple … only real many-body effect come from 
plasmons in the charge channel.   
QSGW is a way to choose the optimum basis set for many-body 
physics … strongly affects relative importance of diagrams. 

Impact 
ionization, ZnS 



What GW does well (I)	
--- No simple answer because:  
•  scGW is poor for spectral properties (much better for 

total energy; see Kutepov et al, PRB 80, 041103R),  
•  Starting-point dependence of G0W0 ⇒ ambiguities 
QSGW offers perhaps the most sensible path to eliminate 
ambiguities, and elucidate strengths and weaknesses in GW 

1:  van der Waals interactions are built into the 2nd order 
bubble (missing in LDA, DMFT) 



What GW does well (II)	

2. Nonlocal correlation in the polarization.   
Example:  The benzene energy gap is predicted to be 
strongly renormalized from 10.5 eV (gas phase) when put 
on graphite (7.2 eV).  

Neaton, Hybertsen and Louie, 
PRL 97, 216405 

Basically like an image 
force. 
 
Although correlation 
relatively weak in this 
case --- modification of 
the screening has a big 
effect 



What GW does well (III)	

3. Nonlocal correlation in the self-energy.   
DFT gaps are too small because potential is local. 
Choices: (1) make do with nonanalytic Vxc (problematic) or   
(2) allow nonlocality in the potential (practical).  Most 
methods that resolve the bandgap problem put in some 
form of nonlocality.   GW does it in a natural way. 

The GWA is usually formulated as a perturbation theory
starting from a noninteracting Green’s function G0 for
given one-body Hamiltonian H0 ! "r2

2m # Veff . H0 is non-
interacting, so Veff is static and Hermitian but it can be
nonlocal. Because the GWA is an approximation to the
exact theory, the one-body effective Hamiltonian H$!% !
"r2

2m # Vext # VH # !$!% depends on Veff and is a func-
tional of it: the Hartree potential VH is generated through
G0 ! 1=$!"H0 & i!%, and the GWA generates !$!%.
H$!% determines the time evolution of the one-body am-
plitude for the many-body system.

QSGW is a prescription to determine the optimum H0:
we choose Veff based on a self-consistent perturbation
theory so that the time evolution determined by H0 is as
close as possible to that determined by H$!%, within the
RPA. This idea means that we have to introduce a norm M
to measure the difference "V$!% ! H$!% "H0; the opti-
mum Veff is then that potential which minimizes M. A
physically sensible choice of norm is

M'Veff( ! Tr'"V"$!"H0%f"Vgy(
# Tr'f"Vgy"$!"H0%"V( (1)

where the trace is taken over r and !. Exact minimization
M is apparently not tractable, but an approximate solution
can be found. Note thatM is positive definite. If we neglect
the second term and ignore the restriction that Veff is
Hermitian, we have the trivial minimum M'Veff( ! 0 at
Veff ! Vext # VH # Vxc where Vxc ! P

ijj ii!$"j%ijh jj.
Here !$"i%ij ! h ij!$"i%j ji, and f i; !igare eigenfunc-
tions and eigenvalues ofH0. The second term is similarly a
minimum with !$"i%! !$"j%. An average of the
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FIG. 1 (color online). Fundamental gaps of sp compounds
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was subtracted by hand from the calculations. The GLDAWLDA

gaps improve on the LDA, but are still systematically under-
estimated. For QSGW data, zinc-blende compounds with direct
#-# transitions are shown as circles; All other gaps are shown as
squares. Errors are small and highly systematic, and would be
smaller than the figure shows if the electron-phonon renormal-
ization were included.
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The GWA is usually formulated as a perturbation theory
starting from a noninteracting Green’s function G0 for
given one-body Hamiltonian H0 ! "r2

2m # Veff . H0 is non-
interacting, so Veff is static and Hermitian but it can be
nonlocal. Because the GWA is an approximation to the
exact theory, the one-body effective Hamiltonian H$!% !
"r2

2m # Vext # VH # !$!% depends on Veff and is a func-
tional of it: the Hartree potential VH is generated through
G0 ! 1=$!"H0 & i!%, and the GWA generates !$!%.
H$!% determines the time evolution of the one-body am-
plitude for the many-body system.

QSGW is a prescription to determine the optimum H0:
we choose Veff based on a self-consistent perturbation
theory so that the time evolution determined by H0 is as
close as possible to that determined by H$!%, within the
RPA. This idea means that we have to introduce a norm M
to measure the difference "V$!% ! H$!% "H0; the opti-
mum Veff is then that potential which minimizes M. A
physically sensible choice of norm is

M'Veff( ! Tr'"V"$!"H0%f"Vgy(
# Tr'f"Vgy"$!"H0%"V( (1)

where the trace is taken over r and !. Exact minimization
M is apparently not tractable, but an approximate solution
can be found. Note thatM is positive definite. If we neglect
the second term and ignore the restriction that Veff is
Hermitian, we have the trivial minimum M'Veff( ! 0 at
Veff ! Vext # VH # Vxc where Vxc ! P

ijj ii!$"j%ijh jj.
Here !$"i%ij ! h ij!$"i%j ji, and f i; !igare eigenfunc-
tions and eigenvalues ofH0. The second term is similarly a
minimum with !$"i%! !$"j%. An average of the
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FIG. 1 (color online). Fundamental gaps of sp compounds
from LDA (squares) and GLDAWLDA (circles) in top panel, and
from QSGW, Eq. (2), in bottom panel. The spin-orbit coupling
was subtracted by hand from the calculations. The GLDAWLDA

gaps improve on the LDA, but are still systematically under-
estimated. For QSGW data, zinc-blende compounds with direct
#-# transitions are shown as circles; All other gaps are shown as
squares. Errors are small and highly systematic, and would be
smaller than the figure shows if the electron-phonon renormal-
ization were included.
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← 
GLDAWLDA 

→ 
QSGW 



What GW does well (IV)	

4. level alignments generally very good.   
Example: Fe/MgO/Fe tunnel junctions   
(Tunneling Magnetoresistance: basis for 
modern read heads.) 

Apply V ⇒ Fe 
Surface state 
crosses EF ⇒ 
current spike 

<0.4 <0.2 0 0.2 0.4
0

10<4
LDA
QSGW
d2I/dV2

E-Ev
_A
P

TD

Peak observed in       
dI/dV at 0.2 eV.  LDA: 
dI/dV peaks at 0V 



Where does QSGW Break Down?	

Unoccupied states universally too high 
ü ~0.2 eV for sp semicond;  
ü <~1eV for itinerant d SrTiO3, TiO2 
ü >~1eV for less itinerant d NiO 
ü ~3 eV for f  Gd,Er,Yb 

Peaks in Im ε(ω) universally too high 

ε∞ universally 
20% too 
small. 
Errors are all 
related!  



Quasiparticle Self-Consistency for NiO	

NiO looks ok, but gaps too big! 
(clear marker of RPA 

overestimating W) 

BIS 

QSGW 

J. Phys. Cond. Matt. 20, 95214 

Spin waves in MnO and NiO 
very well described.  True ab 
initio, all electrons on same 

footing. 



Largest Error: missing diagrams in W 
A blue shift in the plasmon peak has effect on Re[ε(0)] 
(Kramer’s Kronig relation).  Approximate peak by δ-fn: 

expth
1

th exp

( )( )1 1 1 1Re (0) 0d
δ ω ωδ ω ωχ ω

π ω ω π ω ω

∞

−∞

⎛ ⎞′ −′⎡ ⎤− ′Δ = − = − <⎜ ⎟⎢ ⎥ ⎜ ⎟′ ′⎣ ⎦ ⎝ ⎠
∫

ε∞ too small because of blue shifts in plasmon peaks. 
The RPA approximation for the 
polarizability P =iG0 ×G0, misses screening 
channels, especially:  
e− and h+ are attracted via W, e.g. by ladder diagrams,    

+ + + … W 

0G
0G

0G
0G

Conclusion: W calculated via RPA is too large, by 25% at ω=0.  
(Ladders needed for good optical spectra) 



Consequences of WRPA →WBSE  	
Cunningham’s work; he will talk about this tomorrow 

Takeaway message: GWBSE does a 
stellar job at describing electronic 
structure in many kinds of 
materials, provided spin 
fluctuations are not too strong!


Sr2RuO4 



QSGW and Transition Metals	

L3  

Trends in 3d series 

WRPA is screened 
in the charge 
channel only … no 
spin fluctuations. 

QSGW : vast 
improvement 
over LDA for 
TM in general. 
 
But for Ni, 
problems 
appear 

Calculated ΔEx : 
QSGW   LDA 
   0.76       0.71 
Calculated M : 
QSGW   LDA 
   0.76       0.60 

QSGW misses a 
satellite at -6 
eV seen in 
photoemission 



Spin Fluctuations 	
In Ni spin fluctuations are important (Nolting et al, 1989) 
Quite generally, QSGW appears to:  

•  predict M in local-moment systems very well  
•  overestimate M in itinerant systems. 

Spin fluctuations reduce 〈M〉.  Moriya estimated 〈∆M〉 from FD 
theorem.  Requires ∫dω Imχ   (Mazin et al PRL 2004). 
… Better fluctuations are built into higher order diagrams. 

LDA has two distinct errors:  
〈M〉 is too large in itinerant 
materials. 
〈M〉 is too small in local-
moment systems (CoPt, MnAs) 
In Ni the errors cancel … 〈M〉 
is fortuitously good! 



Spin Fluctuations in Fe are not important 
QSGW matches  ARPES and inverse PE (Santoni & Himpsel, 
Phys. Rev. B 1991) extremely well … 

Much better than LDA+DMFT.  Small discrepancies at ~0.1 eV 
scale: … But it turns out that differences are largely artifacts 
of final-state effects in PE!    See Phys. Rev. B 95, 041112(R) 



FeSe: Strongly correlated unconventional SC	

FeSe has no magnetic order. Start from nonmagnetic QSGW  

L.S generates ~30 meV shifts 
LDA  →  QSGW:   	

e– and h+ pockets shift by ~100 meV 
Bandwidths are reduced 

LDA 

L.S=0 

Important role of SO  Small QSGW bandwidths 



Nonlocality in Self-Energy	

GW has:

ü  Spatial nonlocality Σ(r,r′,ω) 
ü  Nonlocality in Σ(r,r′,ω)

ü  (but quasiparticlized)


But pockets at Γ and M are 
still too deep.  Why?


   Zk = (1− ∂Σ(k,ω )∂ω ) |ω=0
−1

2

The DMFT for the dynamical self energy is iterated, and
converges in ⇡ 10 iterations. The calculations for the
single particle response functions are performed with 108

QMC steps per core and the statistics is averaged over
64 cores. The two particle Green’s functions are sampled
over a larger number of cores (192) to improve the statis-
tical error bars. We sample the local two-particle Green’s
functions with CTQMC for all the correlated orbitals and
compute the local polarization bubble to solve the inverse
Bethe-Salpeter equation (BSE) for the local irreducible
vertex. Finally, we compute the non-local polarization
bubble G(k,!)G(k � Q,! � ⌦) and combined with the
local irreducible vertex36 we obtain the full non-local spin
and charge susceptibilities �s,c(Q,⌦). The susceptibili-
ties are computed on a 16⇥ 16⇥ 16 Q-mesh.

TABLE I. dxz,yz and dxy QP levels near EF , tetragonal struc-
ture.

� M Z A
LDA,nm +109 +113 �204 �337 +254 +141 �208 �582

QSGW++
QSGW,nm +41 +44 �107 �202 +131 +56 �113 �334

SQS6 +45 +60(?) �52 �70 +31 +68 �59 �72
nm+DMFT +1 +10 �21 �40 +10 +32 �22 �35
LDA+DMFT +30 +45 �110 �125 +42 +65 �112 �128
ARPES39–41 +9 �18 �22 �42 +7 +34 �16 �25

TABLE II. dxz/dyz/ and dxy QP levels near EF , tetragonal
structure.

� M Z A
LDA,nm +109 +113 �204 �337 +254 +141 �208 �582

QSGW,nm +41 +44 �107 �202 +131 +56 �113 �334
ARPES39–41 +9 �18 �22 �42 +7 +34 �16 �25

I. SINGLE PARTICLE SPECTRA:
TETRAGONAL PHASE

Fig. 1 depicts QSGW band structures in various forms.
The upper top panels show QSGW band structure for
nonmagnetic Fe: the right panel shows the same data
plotted on a finer energy scale. Bands are colored accord-
ing to their orbital character, as explained in the Figure
caption. States closest to the Fermi surface are of dxy
character (red) and dxz,yz character (green). Also shown
in the left panel (as light gray dashes) are corresponding
LDA band structures. (The latter are close to what was
reported by Subedi et al.35. Dispersions widen signifi-
cantly relative to QSGW, as typically occurs for d band
systems14,15. Of particular importance are the depth of
the electron pockets and M and A. and hole pockets at
� and Z. They are considerably deeper, even while the
xy and xz, yz bands cross EF at similar points. It is
principally this fact that is ressponsible for LDA+DMFT

failing to reliably reproduce QP spectra near the Fermi
level [references needed].
The upper right panel shows the e↵ect of spin-orbit

coupling by comparing the QSGW band structure with
the L·S term removed (light gray dashes). The e↵ect is
largest at �. As we will show, this small, one-body e↵ect
has very large consequences for the susceptibilities.
High-resolution ARPES measurements find states at

M at �22 and �42 meV, respectively; they were as-
signed to dxz,yz and dxy symmetries, respectively, based
on comparison to DFT calculations7? . QSGW places
these states deeper, at �106meV. At � QSGW places a
the dxy and dxz,yz bands too high at +42meV. Similar
trends are found for Z and A (see Table ).
In summary, the electron and hole pockets are deeper

than observed in ARPES measurements, and the Fermi
surfaces larger. We believe that most of this discrepancy
can be directly attributed to the omission of spin fluctu-
ations, as we now show. It has been observed that while
Fe has no local moment on average, large fluctuating mo-
ments are present with a rms amplitude

p
M2⇡2µB

9. As
a first approximation this can be modelled in a QSGW
framework by considering a (⇡,⇡)-ordered antiferromag-
netic configuration. Indeed carrying out a calculation to
QSGW self-consistency, an antiferromagnetic state was
found with a local moment of 1.85µB. However, the re-
sulting energy-band structure shifts dramatically and is
far removed from the ARPES measurements.
A better approximation is to treat FeSe in a Special

QuasiRandom Structure (SQS)? . We found a particu-
larly convenient SQS by taking as lattice vectors multi-
ples (P1,�P2,0), (2P1,P2,0), (0,0,P3) of the FeSe con-
ventional tetragonal cell. The SQS consists of 6 Fe atoms,
which can be arranged so that the Fe" and Fe# sites have
zero nearest-neighbor pair and three-body correlation
functions, yet there still remains a translational group
operation that enforces overall antiferromagnetic sym-
metry. Second neighbor pairs have small, but nonzero
pair correlations. Thus much of local magnetic order is
destroyed, while ensuring that the system has exactly no
average magnetic moment.

Performing a QSGW calculation for the nonmagnetic
case merely reproduces the results of nonmagnetic FeSe
in the conventional cell. The resulting band structure is
given in panel (d) of Fig. 1. It is identical to that of panel
(b) of the same figure, but because the unit cell is larger,
k- points (1/3, 1/3, 1/3) and (2/3, 2/3, 2/3) get folded
into the � point. Thus the points depicted by the blue
and yellow vertical arrows are equivalent to the � and M,
points respectively. By comparing panels (b) and (d), it
is evident that the green bands at M near �100meV are
the states corresponding to the true M point.

Turning to the antiferromagnetic SQS structure, we
find that, remarkably, two distinct self-consistent QSGW
solutions can be stabilized. Such a situation can arise
even in density-functional theory (as in fcc Fe), when
a high spin and low spin state are energetically com-
petetive. In this case the high-spin state (M=2.5µB±0,

Compare QSGW and LDA to ARPES   



Spin Fluctuations in FeSe	

Simulate paramagnetism with SQS6 structure 
A low moment QSGW solution can be 
stabilized with 〈M〉=0.2±0.15 µB .   

Levels shift towards ARPES data, but still 
significant discrepancy. 

Shows spin fluctuations are important but (QS)GW does 
not adequately capture them.   
Use DMFT to get higher order diagrams in spin channel 

2

The DMFT for the dynamical self energy is iterated, and
converges in ⇡ 10 iterations. The calculations for the
single particle response functions are performed with 108

QMC steps per core and the statistics is averaged over
64 cores. The two particle Green’s functions are sampled
over a larger number of cores (192) to improve the statis-
tical error bars. We sample the local two-particle Green’s
functions with CTQMC for all the correlated orbitals and
compute the local polarization bubble to solve the inverse
Bethe-Salpeter equation (BSE) for the local irreducible
vertex. Finally, we compute the non-local polarization
bubble G(k,!)G(k � Q,! � ⌦) and combined with the
local irreducible vertex36 we obtain the full non-local spin
and charge susceptibilities �s,c(Q,⌦). The susceptibili-
ties are computed on a 16⇥ 16⇥ 16 Q-mesh.

TABLE I. dxz,yz and dxy QP levels near EF , tetragonal struc-
ture.

� M Z A
LDA,nm +109 +113 �204 �337 +254 +141 �208 �582

QSGW++
QSGW,nm +41 +44 �107 �202 +131 +56 �113 �334

SQS6 +45 +60(?) �52 �70 +31 +68 �59 �72
nm+DMFT +1 +10 �21 �40 +10 +32 �22 �35
LDA+DMFT +30 +45 �110 �125 +42 +65 �112 �128
ARPES39–41 +9 �18 �22 �42 +7 +34 �16 �25

TABLE II. dxz/dyz/ and dxy QP levels near EF , tetragonal
structure.

� M Z A
LDA,nm +109 +113 �204 �337 +254 +141 �208 �582

QSGW,nm +41 +44 �107 �202 +131 +56 �113 �334
SQS6 +45 (60) �52 �70 +31 +68 �59 �72

ARPES +9 �18 �22 �42 +7 +34 �16 �25

I. SINGLE PARTICLE SPECTRA:
TETRAGONAL PHASE

Fig. 1 depicts QSGW band structures in various forms.
The upper top panels show QSGW band structure for
nonmagnetic Fe: the right panel shows the same data
plotted on a finer energy scale. Bands are colored accord-
ing to their orbital character, as explained in the Figure
caption. States closest to the Fermi surface are of dxy
character (red) and dxz,yz character (green). Also shown
in the left panel (as light gray dashes) are corresponding
LDA band structures. (The latter are close to what was
reported by Subedi et al.35. Dispersions widen signifi-
cantly relative to QSGW, as typically occurs for d band
systems14,15. Of particular importance are the depth of
the electron pockets and M and A. and hole pockets at
� and Z. They are considerably deeper, even while the
xy and xz, yz bands cross EF at similar points. It is

principally this fact that is ressponsible for LDA+DMFT
failing to reliably reproduce QP spectra near the Fermi
level [references needed].
The upper right panel shows the e↵ect of spin-orbit

coupling by comparing the QSGW band structure with
the L·S term removed (light gray dashes). The e↵ect is
largest at �. As we will show, this small, one-body e↵ect
has very large consequences for the susceptibilities.
High-resolution ARPES measurements find states at

M at �22 and �42 meV, respectively; they were as-
signed to dxz,yz and dxy symmetries, respectively, based
on comparison to DFT calculations7? . QSGW places
these states deeper, at �106meV. At � QSGW places a
the dxy and dxz,yz bands too high at +42meV. Similar
trends are found for Z and A (see Table ).
In summary, the electron and hole pockets are deeper

than observed in ARPES measurements, and the Fermi
surfaces larger. We believe that most of this discrepancy
can be directly attributed to the omission of spin fluctu-
ations, as we now show. It has been observed that while
Fe has no local moment on average, large fluctuating mo-
ments are present with a rms amplitude

p
M2⇡2µB

9. As
a first approximation this can be modelled in a QSGW
framework by considering a (⇡,⇡)-ordered antiferromag-
netic configuration. Indeed carrying out a calculation to
QSGW self-consistency, an antiferromagnetic state was
found with a local moment of 1.85µB. However, the re-
sulting energy-band structure shifts dramatically and is
far removed from the ARPES measurements.
A better approximation is to treat FeSe in a Special

QuasiRandom Structure (SQS)? . We found a particu-
larly convenient SQS by taking as lattice vectors multi-
ples (P1,�P2,0), (2P1,P2,0), (0,0,P3) of the FeSe con-
ventional tetragonal cell. The SQS consists of 6 Fe atoms,
which can be arranged so that the Fe" and Fe# sites have
zero nearest-neighbor pair and three-body correlation
functions, yet there still remains a translational group
operation that enforces overall antiferromagnetic sym-
metry. Second neighbor pairs have small, but nonzero
pair correlations. Thus much of local magnetic order is
destroyed, while ensuring that the system has exactly no
average magnetic moment.

Performing a QSGW calculation for the nonmagnetic
case merely reproduces the results of nonmagnetic FeSe
in the conventional cell. The resulting band structure is
given in panel (d) of Fig. 1. It is identical to that of panel
(b) of the same figure, but because the unit cell is larger,
k- points (1/3, 1/3, 1/3) and (2/3, 2/3, 2/3) get folded
into the � point. Thus the points depicted by the blue
and yellow vertical arrows are equivalent to the � and M,
points respectively. By comparing panels (b) and (d), it
is evident that the green bands at M near �100meV are
the states corresponding to the true M point.

Turning to the antiferromagnetic SQS structure, we
find that, remarkably, two distinct self-consistent QSGW
solutions can be stabilized. Such a situation can arise
even in density-functional theory (as in fcc Fe), when
a high spin and low spin state are energetically com-



Generic approach to strong correlations: partitioning 
A universal theory that handles all electrons on an even footing 

is not feasible.  So … we do higher level physics in subspace 
where correlations are strong.  What is required? 

1.  A starting noninteracting hamiltonian (or G0) with a family 
of states {i} and a subspace of it 

2.  We saw that we could partition G into a subspace Gss and the 
“rest”, and that the effect of the “rest” on Gss can be cast 
in terms of a self-energy 

0 0
restss ss ss ssG G G G= + Σ

3.  We need the effective interaction Weff in the subspace.  
This defines the effective local hamiltonian.  Solve ~exactly.   

4.  If the subspace were the full space, Weff would be just the 
bare Coulomb v.  If you could solve the full problem exactly, 
W would be a byproduct of calculation ...  but not feasible. 



This formula carries over to the exact many-body system with 
a suitable redefinition of P (see Myrta’s talk).   
W can be equivalently expressed as a Dyson equation 

Dyson Equation for W 	

So … if W(1) is W from a low-level theory like GW, we can 
calculate W(2) if we can calculate P(2).  We will see that P(2) can 
be obtained from a pair correlation function. 
Note: no one actually does this today, but it tells you what to 
do in principle.  For now, we just choose a local U, J. 

If P is divided into separate contributions P= P(1) + P(2), then 
W can be similarly partitioned  

1)(1 vP v PW Wv v− +=−=

(1) (1) (1)

(2) (1) (1) (2) (2)

W v vP W
W W W P W

= +
= +

Remember that we developed a formula for W in the RPA. 
0 1 1)(1W vvP vε− −= =−



General Framework for the Many-Body Problem	

0. Begin with a noninteracting H0 ⇒ G(0) = ω − H0 

   Make P and Σ(1) and for the entire system.  
•   At the GW level, P → P0 = G0G0 and Σ(1) → iG0W.  
•   This defines an initial G(1) =(ω − H0 − Σ(1))−1 

•   Note: this is typically performed in k-space . 

  
G (1) = G (0) +G (0)Σ(1)G (1)

G (2) = G (1) +G (1)Σ(2)G (2)

Partition using the “dual Dyson equation”  for G and W 
(1) (1) (1)

(2) (1) (1) (2) (2)

W v vP W
W W W P W

= +
= +

Treat entire system at a low level approximation (for 
definiteness, take low level approximation as GW) and deal 
with the interactions of a subsystem at a higher level. 
Note   G (2) = G (1) +G (1)Σ(2)G (1) +G (1)Σ(2)G (1)Σ(2)G (1) + ...

For us, this is just a standard QSGW calc.  (Could be LDA) 



Framework II	

2. Build the effective interaction Uijkl for the subspace.

Recall relation between W and polarizability P:


1. Choose a subspace, defined by one-particle orbitals |j〉.  

Make the projection of G(1), P(1), W(1) onto this subspace,  e.g. 
projections Gij = 〈i|G|j〉,  Wijkl = 〈ij|W|kl〉, Pijkl = 〈ij|P|kl〉   
For the Questaal code,  subspace = d or f partial waves


  W = (1− vP)−1v ⇒W −1 = v−1 − P ⇒ v−1 =W −1 + P

  U
−1 =Wrest

−1 =Wijkl
−1 + Pijkl

Partition P into P=Prest + Pijkl .   Remove Pijkl   part of screening 
in Wijkl  to get effective interaction partially screened by the 
“rest.”  Partially unscreened interaction is customarily called U. 


  v−1 =W −1 + PFull system P removes 
screening from W 



Framework III	

3. Gij
(1)  and U(1)  define the many-body hamiltonian for the 

system.  Use a high-level solver (e.g. CTQMC) to obtain Σij
(2)  

and Gij
(2) =(Gij

(1) 
 − Σij

(2))−1 

4. (Almost never done in practice, but possible in principle).  
Update full system  P  and W in full space 
Get improved local  Pijkl from DMFT so we have three quantities:

P(1)      Polarizability of whole system at low level, eg. GW, approx

P(1)

ijkl   projection of P(1) onto subsystem


Pijkl      A better calculation of P in the subsystem.

Improve the system P with the construction

 
P(1,new) = P(1,old) + Pijkl − P(1,old)

ijkl  
From P(1,new) ,  obtain W(1,new)  from Dyson’s equation for W.  




Framework IV	

5. Determine a better Σ(1) to determine a new G. 
 Σ(1,new) = Σ(1,old) + Σ − Σ(1,old)

  

6. (Rarely done in practice, but possible in principle). 

Update the low-level (e.g. GW) using better G to make GW. 
Iterate the parts or all of the cycle: The pair (Σ,P) gets 
successively refined


Approximately this procedure was outlined in Phys Rev Lett 
90, 086402 (Aryasetiawan, Biermann and Georges)

Standard practice today: LDA+DMFT:  Σxc

(1) = Vxc
LDA 


Questaal partially implements QSGW+DMFT.   

New ability to calculate 2-particle properties with local two-
particle vertex + BSE. 

Basic formalism still evolving 





FeSe, QSGW+DMFT	

With QSGW as a bath, DMFT describes ARPES very well! 

2

The DMFT for the dynamical self energy is iterated, and
converges in ⇡ 10 iterations. The calculations for the
single particle response functions are performed with 108

QMC steps per core and the statistics is averaged over
64 cores. The two particle Green’s functions are sampled
over a larger number of cores (192) to improve the statis-
tical error bars. We sample the local two-particle Green’s
functions with CTQMC for all the correlated orbitals and
compute the local polarization bubble to solve the inverse
Bethe-Salpeter equation (BSE) for the local irreducible
vertex. Finally, we compute the non-local polarization
bubble G(k,!)G(k � Q,! � ⌦) and combined with the
local irreducible vertex36 we obtain the full non-local spin
and charge susceptibilities �s,c(Q,⌦). The susceptibili-
ties are computed on a 16⇥ 16⇥ 16 Q-mesh.

TABLE I. dxz,yz and dxy QP levels near EF , tetragonal struc-
ture.

� M Z A
LDA,nm +109 +113 �204 �337 +254 +141 �208 �582

QSGW++
QSGW,nm +41 +44 �107 �202 +131 +56 �113 �334

SQS6 +45 +60(?) �52 �70 +31 +68 �59 �72
nm+DMFT +1 +10 �21 �40 +10 +32 �22 �35
LDA+DMFT +30 +45 �110 �125 +42 +65 �112 �128
ARPES39–41 +9 �18 �22 �42 +7 +34 �16 �25

TABLE II. dxz/dyz/ and dxy QP levels near EF , tetragonal
structure.

� M Z A
LDA,nm +109 +113 �204 �337 +254 +141 �208 �582

LDA+DMFT +30 +45 �110 �125 +42 +65 �112 �128
QSGW,nm +41 +44 �107 �202 +131 +56 �113 �334
nm+DMFT +1 +10 �21 �40 +10 +32 �22 �35
ARPES +9 �18 �22 �42 +7 +34 �16 �25

I. SINGLE PARTICLE SPECTRA:
TETRAGONAL PHASE

Fig. 1 depicts QSGW band structures in various forms.
The upper top panels show QSGW band structure for
nonmagnetic Fe: the right panel shows the same data
plotted on a finer energy scale. Bands are colored accord-
ing to their orbital character, as explained in the Figure
caption. States closest to the Fermi surface are of dxy
character (red) and dxz,yz character (green). Also shown
in the left panel (as light gray dashes) are corresponding
LDA band structures. (The latter are close to what was
reported by Subedi et al.35. Dispersions widen signifi-
cantly relative to QSGW, as typically occurs for d band
systems14,15. Of particular importance are the depth of
the electron pockets and M and A. and hole pockets at
� and Z. They are considerably deeper, even while the

xy and xz, yz bands cross EF at similar points. It is
principally this fact that is ressponsible for LDA+DMFT
failing to reliably reproduce QP spectra near the Fermi
level [references needed].
The upper right panel shows the e↵ect of spin-orbit

coupling by comparing the QSGW band structure with
the L·S term removed (light gray dashes). The e↵ect is
largest at �. As we will show, this small, one-body e↵ect
has very large consequences for the susceptibilities.
High-resolution ARPES measurements find states at

M at �22 and �42 meV, respectively; they were as-
signed to dxz,yz and dxy symmetries, respectively, based
on comparison to DFT calculations7? . QSGW places
these states deeper, at �106meV. At � QSGW places a
the dxy and dxz,yz bands too high at +42meV. Similar
trends are found for Z and A (see Table ).
In summary, the electron and hole pockets are deeper

than observed in ARPES measurements, and the Fermi
surfaces larger. We believe that most of this discrepancy
can be directly attributed to the omission of spin fluctu-
ations, as we now show. It has been observed that while
Fe has no local moment on average, large fluctuating mo-
ments are present with a rms amplitude

p
M2⇡2µB

9. As
a first approximation this can be modelled in a QSGW
framework by considering a (⇡,⇡)-ordered antiferromag-
netic configuration. Indeed carrying out a calculation to
QSGW self-consistency, an antiferromagnetic state was
found with a local moment of 1.85µB. However, the re-
sulting energy-band structure shifts dramatically and is
far removed from the ARPES measurements.
A better approximation is to treat FeSe in a Special

QuasiRandom Structure (SQS)? . We found a particu-
larly convenient SQS by taking as lattice vectors multi-
ples (P1,�P2,0), (2P1,P2,0), (0,0,P3) of the FeSe con-
ventional tetragonal cell. The SQS consists of 6 Fe atoms,
which can be arranged so that the Fe" and Fe# sites have
zero nearest-neighbor pair and three-body correlation
functions, yet there still remains a translational group
operation that enforces overall antiferromagnetic sym-
metry. Second neighbor pairs have small, but nonzero
pair correlations. Thus much of local magnetic order is
destroyed, while ensuring that the system has exactly no
average magnetic moment.

Performing a QSGW calculation for the nonmagnetic
case merely reproduces the results of nonmagnetic FeSe
in the conventional cell. The resulting band structure is
given in panel (d) of Fig. 1. It is identical to that of panel
(b) of the same figure, but because the unit cell is larger,
k- points (1/3, 1/3, 1/3) and (2/3, 2/3, 2/3) get folded
into the � point. Thus the points depicted by the blue
and yellow vertical arrows are equivalent to the � and M,
points respectively. By comparing panels (b) and (d), it
is evident that the green bands at M near �100meV are
the states corresponding to the true M point.

Turning to the antiferromagnetic SQS structure, we
find that, remarkably, two distinct self-consistent QSGW
solutions can be stabilized. Such a situation can arise
even in density-functional theory (as in fcc Fe), when

LDA+DMFT is not adequate because errors propagate to the 
DMFT solver via deficiencies in the hybridization function. 

ß LDA+DMFT  

QSGW+DMFT à  



QSGW + Magnetic DMFT, Applied to Ni	

                             ΔEx       M: 
LDA     0.71  0.60 
QSGW         0.76  0.76 
QSGW+DMFT    0.3  0.51 
QSGW+DMFT(QP)  0.3  0.55 
Experiment    0.3  0.57 

Exchange splitting 
well described by QP 

Self-consistency has 
minimal effect 

Basic idea : combine  
charge ΣQSGW(k) with 
spin     ΣDMFT(ω). 

  

Σ± = ΣQSGW (k)+ ΣDMFT,± (ω )
ΣQSGW   =   [Σ+ (k)+ Σ− (k)] / 2
ΣDMFT,± = ±[Σ+ (ω )− Σ− (ω )] / 2



Summary	
Ø QSGW: use GW to generate effective noninteracting 

hamiltonian H0 to use in diagrammatic theory. 
No unique choice. Density-Functional theory is popular, 
but QSGW is an optimum choice by construction. 
Dramatically improves quality of GW, but also limits. 

Ø When spin fluctuations are weak:  
RPA+ladders work very well! 

Ø When spin fluctuations are strong: 
Many diagrams are needed, but they are mostly local.  
Requires nonperturbative but local approach 

Ø Use partitioning and combine QSGW+DMFT 
Best approach to strong correlations to date. 
Nonlocality restored perturbatively via diagrams 
connecting local vertex. 

QSGW	

QSGŴ	 DMFT	



Feynman Diagrams are a convenient pictorial way to represent 
complicated chains of processes.  Widely used in many-body 
perturbation theory 

Aside : About diagrams	

G(x1,t1;x2,t2)  1 2 The arrow represents the flow of time 
A thick or double line used for an 
interacting G and thin line for G0 

v(x1;x2)  The bare coulomb interaction               
is taken to be instantaneous 

  | x1 − x2 |−1

W(x1,t1;x2,t2)  
The screened coulomb interaction.     
W depends one time, t1− t2. 

Exchange Gv GW 



Alternative Justification of QSGW 

Original justification for QSGW:  find the G0 which miminizes 
difference 〈G−G0〉, according to some definition of 〈…〉, within 
the GW approximation.


A justification based on energy minimization 

Minimize square of gradient of Klein       
energy functional (Ismail-Beigi)


Why not just find G0 that 
minimizes the RPA total 
energy ERPA ?
   

δ ERPA

δG0

= 0
Not possible … there is 
no lower bound 
(PRB76, 165106).


Vxc 

Σ−Vxc 

  
D

2
→ min   where    D =

δ F[G0]
δΣ

J. Phys. Cond. Matt. 29, 385501
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Compare QSGWRPA ,QSGWBSE bands to BIS in  NiO	
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QSGWRPA 

QSGWBSE 

BIS 

1 eV  

0.3 eV  

NiO has both dispersive 
sp bands  
WRPA →WBSE ⇒             
-0.3 eV shift  
… and a flat d band 
WRPA →WBSE ⇒  
-1 eV shift 
 
Shifts get reflected in 
movement of DOS peaks     
(1), (2), (3)  
Compare to BIS … 

Cunningham’s work; he will talk about this tomorrow 


