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Many-electron systems 

•  Forces: electrostatic interactions between charged particles. 
Mostly dominant for chemistry and solid state physics 

•  All that enters are nuclear positions RI, nuclear and electron 
masses MI and mi, and nuclear charges ZI. 

•  One equation predicts extremely rich and diverse phenomena:  
transport, mechanical strength, superconductivity, and … choose 
your favorite! 

The Hamiltonian (lower case i,j  ⇒  e– ; upper case I,J  ⇒ N+ )  
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Range of observables 

All physical observables are calculable (in principle) as 
expectation values of the (many-body) wave function.  

§ heats of formation

§ elastic constants, phonon spectra

§ structure

§ defect formation energies and 
diffusion barriers, catalysis

§ magnetic structure

§ Piezoelectricity


§ Energy bands

§ Conductivity, dielectric response

§ Optical absorption, emission

§ Magnetic excitations 

§ Almost any spectroscopy, e.g. 
EELS, photoemission


Ground state (from E = 〈H〉)        Excited State  

But … also very difficult to solve!  Especially when 
correlations are strong 



Many-body Hamiltonian doesn’t factor 

The problem remains: solve the SE for this hamiltonian! 
            Huge problem 
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Vint involves pairs of electrons 

Almost every description we have is based on the independent 
particle picture: even special cases (Cooper pairs) are “particles”. 
But Vint  precludes factorization of the many-body Ψ e.g.: 

 Ψ (r1,r2,…,rN ) → ψ1(r1) × ψ2(r2) × … × ψN(rN) 
Without it, we can’t even talk about the particles as though 
they are independent --- just a “soup” 
Worse: Vint is both large (e2=14.4 eV-A) and has infinite range. 
Electrons interact strongly with each other.  Not clear can we 
can sensibly talk about independent particles at all ..  
Fortunately, for most part, Nature is kinder than that.   



Quasiparticles	

•  How to cast many-body problem into a collection of independent 
particles ?   
  Ψ (r1,r2,…,rN) → ψ1(r1) × ψ2(r2) × … × ψN(rN)  

•  Resolution: each e− contributes some effective external field to 
the entire system. 

•  All e− move in the presence of the collective effective field.   
•  Quasiparticles (Landau): a “particle,” e.g. electron, really 

consists of a normal (“bare”) electron + cloud of other “stuff.”  
•  Quasiparticles behave as though they are nearly independent of 

each other.  Residual interactions (difference betw/ effective 
field and actual field) ⇒ quasiparticles decay after finite time.  
Lifetime cannot be too short if QP picture is to be meaningful. 

•  Q: How to formulate a theory for the effective field? 



Aside:  Self-consistency 

Chicken-and egg problem:  The density n(r) 
generates Veff(r),  while Veff(r) generates n(r) 
through Veff(r) → ψ(r) → n(r) .  
Need one to get the other 

ψ  

n = |ψ|2  

      Veff[n(r)] 

  (−∇
2 +Veff )ψ = εψ

Resolution: guess a trial Veff(r), and 
iterate until the Veff that generates ψ is 
the same as the Veff generated by ψ. 

For the moment, let’s assume we have some method in hand to 
construct Veff(r).  Assume Veff(r) generated from n(r) for simplicity.


Self-consistency places a central role for any 
approximate method.  A nontrivial issue in general! 



Simplest formulation of Veff : Hartree Fock 	

Hartree-Fock was the first. Write the hamiltonian this way: 
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Define a (complete) set of one-particle orbitals ψi(x) .   
Make a Slater Determinant of N them: 

Space	+	spin	

   Ψ = N −1/2 det |ψ i (x k ) |

Variational principle: vary the shape ψi(x) until E is minimum 

   δ Ψ H Ψ = 0   subject to constraints  ψ i
*(x)∫ ψ j (x)dx = δ ij

How to formulate the noninteracting reference system? 



One Electron Hamiltonian 	

generates effective one-body H0: 
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density	matrix	

  E[N ]− E[N −1,i empty] = ε i

(assumes the ψi does not relax after the particle is excited)  

Ground state: only the lowest N states are filled; only the 
first N are ψi, εi are needed. 

  δ Ψ H Ψ / δψ i = 0



Features of the Hartree-Fock Approximation	

Ø  Build Ψ from Slater determinants of 1-particle ψ1, ψ2, …  
•  e.g for two particles: Ψ(r1,r2) = ψ1(r1)ψ2(r2) − ψ2(r1)ψ1(r2)  
•  Satisfies self-interaction and symmetry (exclusion principle)  
•  Slater Determinant  ⇒ limited correlation : For example,  
Ψ(r1,r2) = 0 when r1= r2. (called “exchange”) 

•  Potential is now “Hartree” (e.s.) + “Exchange” Exchange is 
very important: explains origin of magnetism as a consequence 
of the Pauli Exclusion principle. 

Ø Simplest ab initio theory consistent with QM.  
•  What is put in is well defined.  
•  Effective potential Veff is real and ω-independent ⇒      

effective hamiltonian is a noninteracting, 1-body H0 . 
•  Hamiltonian is nonlocal : Veff = VH+Vx(x,x′) ⇒ each e− sees own V. 
•  Correlation underestimated:  energy > exact result 



Problems with the Hartree-Fock Approximation	

Ø  Moderate errors in small molecules (used in chemistry) 
Ø  Severe errors in condensed matter 

Ø Total energy: Fe is predicted to be AFM insulator 
 Magnetic moment in the FM state is much too large 

Ø velocity has pathological divergence at EF in metals  

Ø Bandgaps, bandwidths much too large: 5 eV in Si, expt = 1.1 eV 
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Ø  Largest source of error : v needs to be screened! 
Ø  Even simple screening, e.g. Thomas Fermi        

v(q) = 1/(q2 + q2
TF) helps a lot.  It removes 

divergence of vF in metals, reduces bandwidths, 
magnetic moments … 
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Choices of the basic variable 

Much freedom in how Veff  is constructed.  Usually Veff  made from 
(or for) a Slater determinant of independent-particle ψi(r)


Ψ(r1,r2,…,rN ) → ψ1(r1) × ψ2(r2) × … × ψN(rN)  

Hartree Fock theory is the simplest formally.  Assumes a Slater 
determinant Φ for Ψ(r1,r2,…,rN ).   Vi

eff  is determined from 


   Vi
eff (r) = δ Φ Ĥ Φ / δψ i (r)

Density functional theory : Fundamental variable is density n(r) . 
Veff derives from a functional derivative δV/δn,  
⇒ every ψi(r) feels same Veff much simpler!  

Called “locality”  … both a blessing and a curse. 


Greens’ function methods use G(r,r′,ω) as fundamental variable.

“Goldilocks” approach --- less info than ψi but more than n(r).  
Intermediate in complexity --- gradually supplanting DFT.


Thus the ψi(r)  are the fundamental variable.  Depends on i ! 




Density Functional Theory : Materials Workhorse	

•  Hartree-Fock theory was the first to provide realistic 
solutions to Schrodinger’s equation … but

• Computation is CPU-intensive (scales as N4)

• Missing electron correlation is not small! 


•  In the 1950’s Slater developed an 
efficient way to estimate the Fock 
exchange.  From Hartree Fock Vx was 
known to vary as n1/3  in the 
homogeneous electron gas.       
Slater’s idea: replace the true Vx by a 
function Vx(r) ∝n1/3(r) .  Slater called it 
the “X-alpha method.”


• During the 1960s Slater’s idea evolved into a formal theory by 
Walter Kohn (Nobel laureate in chemistry, 1998).




Hohnberg and Kohn (1964) proved that the total energy E can be 
determined solely from the density. The total energy is written: 

Density-Functional Theory I 
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Classical Electrostatics Correlations 

Ø E=E[n(r)] where the density n(r) is the basic variable.   
Ø DFT uses n alone rather than E=E[{ψi}] as in Hartree-Fock. 

A “deep” result:  n can determine the many-body Ψ(r1,r2,…,rN )  
Ø  Formally exact but E[n] is unknown! Must be highly nonanalytic 
Ø Particularly pathological is the K.E. functional T[n] .   
•  Hard to see how any universal functional of n can reproduce, e.g. 

core states of an atom  ⇒ discontinuities. 
•  Similar problems as change occupation of 1-electron levels. 
Ø Tradeoff:  E[n] has vastly fewer degrees of freedom than E[{ψi}] 

⇒ complication pushed onto unknown Exc[n(r)] .   



Density-Functional Theory II : the LDA 
A tractable theory: Kohn-Sham ansatz + the Local Density Approx. 
1.  Assume T[n] is identical to T for a non-interacting system with 

orbitals constructed from the theory (general to DFT methods) 
2.  Approximate Exc has some analytic form, calculated e.g. for a 

reference system such as the homogeneous electron gas 

EKS = kinetic + potential 
energy: 

   

EKS = Ts[n]+ Epot[n],     

Epot[n] = drVext (r)∫ n(r)+ EH [n]+ Exc[n]
Use noninteracting ansatz 
to get at TKS  through a back door. 
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Properties of the Local Density Approximation	

We do not know Exc[n] , but must make approximations for it.  DFT 
is very effective because Exc[n] is much less pathological than T[n]. 
Simple approximations (e.g. Exc[n] for the homogeneous electron 
gas) can give very good results (especially for ground-state 
properties in weakly correlated systems)


Ø  LDA, variants have become standard “workhorse” --- now 
widely used in almost every branch of science, engineering


Ø An extremely simple and universal theory … all the 
complexity is folded into a simple and universal functional.


Ø  Key point:  all electrons see same effective potential Veff(r).  
In contrast to Hartree-Fock (nonlocal Vx(r,r′) ⇒ each electron 
sees a different Veff(r)).
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Universal ⇒ calculate almost exactly for model, e.g. jellium  



Measurements of the electron density 

X-ray diffraction DFT result 

Nature, 401, 49-52 (1999) 

DFT is formally exact and can predict 
any materials property in principle …




DFT has been tremendously successful! 

DFT can work in places where you might not expect it to!


Fermi surface of Sr2RuO4 (strongly correlated superconductor)

compares nicely to high-quality laser ARPES to DFT.

From A. Tamai et al, arXiv 1812.06531 (2018)




Trajectory of DFT 

DFT has revolutionized our 
ability to realistically 
describe materials properties 





Works best for ground state 
properties, ie derived from E 




Problems with the Local Density Approximation	

Semi. bandgaps too small Poor Na bands 

Magnetism 
often 
poorly 
described 

Schottky 
barriers at 
metal-semi 

contacts fall 
too close to 

Valence Band 

LDA CoO is metalllic 
but real CoO is AFM 
insulator w/~2.9 eV gap 

ϕB 



Two possible explanations for LDA error	

What is the dominant source of difficulty in the L(S)DA? 
Explanation I: Ansatz for Exc[n]  is not good enough. 
Explanation II: Kohn-Sham ψi and eigenvalues εi the Lagrange 

multipliers of the KS hamiltonian 

    
ĤKS

σ = − 
2

2m
∇2 + [VKS

σ (r) =VH (r)+Vext (r)+Vxc
σ (r)] are fictitious. 

Q: How do we assess the source of error? 
A: Density-functionalize nonlocal functionals and check. 
Not a strict division (there is an interplay between them).  
But roughly: 
For ground state properties,  I is often the primary problem 
For excited state properties II is often the primary problem. 



Connection between DFT and QP levels	

ψi and εi fictitious ⇒ discontinuity Δxc in XC potential betw/ 
highest occupied and lowes unoccupied state 

Results show: 
OEP gap (EXX+RPA) close to 
usual LDA gap.  Implies 
Explanation II: the fictitious 
nature of ψi and εi  are the 
primary problem  

Grüning, Marini, Rubio, (J. Chem. 
Phys. 124, 154108) evaluated Δxc 
by "density-functionalizing“ GW 
(OEP) for Si, LiF,Ar  



Many attempts to extend, improve on the LDA	

Ø  Good ground-state properties in weakly correlated systems.

Ø  Excited state properties are much worse.


Phonon band structure of Si 

Spin waves of NiO 
Many attempts to extend LDA. Many 
significant successes, but improve one or 
another property in some special cases.  

Ø  Removing locality is essential … but LDA starts with an ill-

defined ansatz.  Without removing it, hard to systematically 
improve on the basic framework




The coulomb interaction is large and long range.  In many-
particle systems it is strongly renormalized by screening --- this 
is the essential difference between Hartree-Fock and GW.


Screening the Coulomb interaction 	

⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅ 
δVi

0 

δqj
0 

Consider a lattice of points i , with the e–  
density initially in equilibrium, perturbed 
by external potential δϕi

 =δVi
0 at site i. 

Supposing the screening charge did not 
interact with itself---let δqj

0 be the 
noninteracting screening charge at j. 


They are connected by the noninteracting 
response function P0


  δqk
0 = Pkj

0δφ j P0 is called the “irreducible polarizability”  



Screening the Coulomb interaction II 	

δqj
0 is determined by change 

Green’s function δG=G-G0 
δG comes from Dyson’s equation. 
Linearize Dyson's equation 

δG  =  G0 δϕiG  ≈ G0 δϕiG0  to get P0  
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As a Feynman diagram, it 
is a bubble 

Now δqi
0  generates an electrostatic potential  δVj
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i
∑ δqi

0 δVi
1  adds to δVj

0  which induces δqi
1 … 



The independent particle picture (AKA the RPA or time-
dependent Hartree approximation) assumes that the screening 
only interacts with it self via the classical coulomb interaction. 
Then δqj

0 would induce a potential 

The screening charge in the RPA 	
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The total potential is 
The Screened Coulomb interaction 	

  
δV tot ≡ δφ +δV scr = δ

n
∑ V n = 1− vP0( )−1

δφ

*This expression continues to hold in the exact description of 
linear response, but the irreducible polarizability P is no 
longer the independent particle P0 = G0G0 . 

The dielectric function is defined as the ratio 
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The screened Coulomb interaction W is the potential resulting 
from a test charge embedded in a medium, i.e. δϕi

  = v = 1/r .  
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GW: A Perturbation theory	

Start from some non-interacting hamiltonian H0. 
 
1. 
 
2. 
 
3. 
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GW as Screened Hartree Fock	

Hartree Fock: e− senses an attractive potential Vx owing to 
correlated motion originating from antisymmetry that keeps e− 

apart.  Note: “correlation” is usually used as a term of art that 
means correlated motion not captured by Hartree Fock! 
Write Fock exchange Vx in terms of Green’s functions: 

   
Σx =Vx (r) = i G(r, ′r )

1
r − ′r

d 3 ′r∫ = iGv

   
Vbare (r, ′r ) = 1

r − ′r
→W (r, ′r ,ω ) = ε −1v;    Σ = iGW

GW: bare coulomb v → dynamically screened W: 

Dynamical screening is the essential difference between GW 
and Hartree Fock. It make both qualitative and quantitative 
changes to the electronic structure. 



Advantages of the GW Approximation	

Ø The GW approximation can potentially redress the worst 
failings inherent in both Hartree-Fock and LDA:  

Ø HF : nonlocality is present, but not screened (disaster)  
Ø LDA: V  is local (same for all e−) ⇒ exact V has pathologies 

and effective one-particle εi, ψi(r) are fictitious.  Leads to            
many problems, e.g. cannot break time reversal symmetry. 

Ø But … GW is a perturbation theory: first term in an 
expansion in W.  Perturbation theory must be carried out 
around some starting point H0.  How choose H0? 

Ø Major development (Hybertsen and Louie, 1987):             
use LDA as starting point 

   H0 =HLDA  ⇒ G=GLDA , W=WLDA ;  Σ = iG LDA W LDA 
Ø Hugely successful in semiconductors  



GW Approximation and Starting Point	

GW neglects vertex 
( )1,2 ,     = − Σ =P iGG iGWG and Σ are usually generated from 

some effective noninteracting H0. 
Usually H0=HLDA 

x
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But this is often problematic … 
particularly when magnetism is 

present 

FeTe 

Nonsensical FS 

NiO 

Severe gap errors 
Nonsensical M, Ex 

↑  MnAs  ↓ 



Quasiparticle self-consistency 

   

H0 =
−1
2m

∇2 +V ext (r) +V H (r) +V xc (r, ′r )

H0ψ i = Eiψ i ⎯→⎯ G0 (r, ′r ,ω ) =
ψ i (r)ψ i

*( ′r )
ω − Ei

i∑

Idea: perform GW  around some optimally chosen G0.

Start with some trial Vxc  (e.g. from LDA, or …).  Defines G0 : 

GWA determines  ΔV  and thus  H : 

   G0
RPA⎯ →⎯⎯ ε(iG0G0 ) GWA⎯ →⎯⎯ Σ(r, ′r ,ω ) = iG0W ;       ΔV = Σ −V xc

( )xc 1 |Re ( ) ( ) |
2 i i j j

ij
V E Eψ ψ= 〈 Σ +Σ 〉∑

Find a new Vxc that minimizes norm N, a measure of ΔV G0. 

result of min N 

Iterate to self-consistency.  
At self-consistency, Ei of G matches Ei of G0 (real part).   



At RT, TiSe2 has a simple unit cell.

The gap is not reliably known, but 
it is thought to be < 0.05 eV.

LDA predicts inverted gap


Cazzaniga et al PRB 85 ‘12 
added GW corrections to LDA 
(GLDAWLDA).  Found an insulator 
with a gap ~0.5 eV … suggests 
usual problem with LDA


Red=Ti 

Green=Se 

Why Self-Consistency is necessary: TiSe2 



But the positive gap is an 
artifact of GLDAWLDA !


LDA and GW eigenfunctions 
should be different (missing in 
1st order pert theory)


Off-diagonal self-energy Σnn’  
modifies density n(r) and thus V.  
Simple ansatz: assume LDA 
adequately yields δV/δn.  The 
potential becomes 

   Σ − Vxc

LDA[nLDA] + Vxc
LDA[nGW] GLDAWLDA 

+ ΔVLDA 

QSGW 

Redo self-consistency.

Gap becomes negative again!


Renormalization by density 

Result similar to QSGW




At low To TiSe2 reconstructs into a 2×2×2 superstructure, a 
superposition of three L point phonon modes, forming a “3Q” 

charge density wave.


What does QSGW predict for 
CDW?  Take displacement 
amplitudes from from GGA 
(Bianco et al PRB 92 ’15).


Trace a path from ideal to 3Q geometry.

Bands evolve in a tortuous manner … but at CDW geometry, 
QSGW predicts an insulator, EG = 0.17 eV (including spin-orbit)


3Q is thought to have a gap

Between 0.05 and 0.15 eV.


What we learn: δV/δn is important, not captured by GLDAWLDA


CDW-induced metal-insulator transition 

2×2×2 
SO 



Important Source of Strong Correlations: Spin	

Classic ARPES study: Himpsel, 
Knapp, Eastman PRB 19, 2919 
Exchange splitting:   
ΔEx = L3↓− L3↑ ≈ 0.3 eV 
                               0.6 eV in LDA 

<2

<1

0

1

2

L

(a)
maj
min
avg

K X

L3  

s band wrongly placed 

Poor dispersion in Λ1 band 

LDA predicts M=0.6 µB, close 
to expt.  But … we shall see 
good agreement is fortuitous 

LDA description of Ni, Fermi liquid regime 

No satellite at -5 eV 

QSGW also not sufficient …  discuss more tomorrow 



Questaal’s Hierarchy	

Basic code (lmf) : all electron 
implementation of DFT 

GW code (lmgw, lmgwsc) : Uses 
lmf basis set to implement GW 
and  QSGW 

Beyond GW: two routes:

(1)   Many-body pert theory. Add ladders to W (Myrta and Brian)

     Works very well when spin fluctuations are not large

(2)   QSGW+Dynamical Mean Field theory  (Swagata and Francois)

     Needed when spin fluctuations are strong


G++ : properties from two-particle G + BSE : spin and charge 
susceptibilities (Brian, Swagata), electron-phonon interaction (Savio)


DFT  



Questaal’s Implentation of DFT 

✔ Different implementations of DFT, Survey 
✔ All-electron methods; how augmentation works 
✔ Linearization ⇒ energy-independent basis 
✔ lmf : All-electron Full Potential method 
✔ Jigsaw Puzzle Orbitals 
✔ Two particle basis sets for many-body theory 



Practical Implementations of the LDA 

Classification #2: orthogonalization to the core. Either:  
Replace the core by an effective (pseudo)potential,  or 

Keep all electrons: Augment the wave 
functions in spheres around each 
nucleus with numerical solutions of 
the radial Schrodinger equation.  
Originally formulated by Slater 

   Questaal is an all-electron method 

Single-particle orbitals ψi are expanded in some basis set. 
Many ways to do this.  

Classification #1:  ψi are expanded in plane waves (most 
common), or in  short-range, atom-centered orbitals. 

  Questaal uses the latter. 



Add some artificial, or pseudo-potential VPS to VLDA ⇒ replace 
true wave function ψ with smooth analog of ψPS , with the  
same eigenvalues.    
No core! 
VPS is not unique! 

Pseudopotentials (most common) 

The envelope defines the 
basis. 
Shown here as green. 
Blue, red show 
augmentation region :  
region where VPS ≠0. 
Can be Plane Waves, or 
Atom-centered functions 



Augmentation 

All-electron basis sets begin with 
envelope functions :   
Far from nuclei ψ is smooth and 
described by smooth envelopes. 
They can be either plane waves or 
local functions. 
Valence ψ must be orthogonal to 
core states ⇒ many wiggles                  
that envelope functions cannot 
well represent.   
Solution: augment spheres around 
nucleus with numerical solutions 
of the Schrodinger equation (red, 
blue).  Called partial waves. 

At interface the 
augmented functions 
must match continuously 
and differentiably onto 
the envelopes.   

Both value and slope must match ⇒ quantization condition (see later).   



Four basic variants  

4 types depicted in figure.    
Envelope functions are green. 
Blue, red show augmentation region 
Pseudo functions: 
þ Very efficient 
ý Approximation can be an issue 

Plane waves: 
þ Readily made complete 
ý Not localized 
Atom centered functions: 
þ Efficient, physical intuition 
ý Completeness can be an issue 

All-electron : 
þ Most rigorous (e.g. semicores) 
ý More cumbersome 



Energy dependence 

Classification #3: the basis can be  
(1)  Fixed (PP methods) -- 

simplest 
(2)  potential-and-energy 

dependent (KKR,APW).  
Accurate but expensive. 
(Nonlinear eigenvalue 
problem; see later) 

(3)  potential dependent.        
LAPW = linearized APW   
LMTO = linearized KKR 

ψ = ψ(E,r). What about E dependence? 

Linearization turns nonlinear secular matrix into linear 
algebraic eigenvalue problem, like fixed-basis case (later). 
Modest loss of accuracy with large efficiency gains. 



Augmentation: Muffin-tin potential and partial waves 

Consider the MT part.  l and m are 
good quantum numbers; use L as a 
shorthand for compound (l,m) indices.  
The SE separates and:


ϕl  satisfies                               or equivalently: 
   ΦL(ε ,r) = YL(r̂)φl (ε ,r)

  (−∇
2 +V (r))φl = εφl

   
− d 2

dr 2 +V (r)+ l(l +1)
r 2 − ε

⎛
⎝⎜

⎞
⎠⎟

rφl (,r) = 0

 rMT 

nucleus 

 VMT 

MT potential:  spherically symmetric inside 
sphere (called “augmentation” sphere) 
Constant in between  

Cut	and	paste	approach	to	Schrödinger	equation	

Construct basis function χj  piecewise: 


The ϕl(ε,r) are called 
partial waves 



Partial Waves and Boundary conditions 

 rMT 

nucleus 

 VMT 2nd order differential equation ⇒               
two solutions. 
Also two boundary conditions: 
1.  ϕl(r) regular as r → 0  (eliminate irr soln) 
2. The boundary condition at  rMT  will depend 
on the whole crystal. Φl  is called a partial 
wave because we have yet to specify the 
boundary condition at r = rMT . 

ϕ(ε3>ε2) 

ϕ(ε2>ε1) 

rMT 

ϕ(ε1) 
ϕ(ε0) 

As ε increases, ϕl(ε,r) acquires 
more curvature ⇒ BC changes. 
Thus specifying ε completely 
fixes the remaining degree of 
freedom of the partial wave.  




Logarithmic Derivative 

At ε = ε0 , slope < 0

As ε increases, (−∇2) increases.  

ε0  < ε <  ε1 : slope ϕl′(r) → 0

At ε = ε1, ϕl(r) → 0 
At ε = ε2  ϕl(r) gets extra node


Information neatly encapsulated in 
the logarithmic derivative D at rMT 

( ) ln ( ){ ( )}
ln

MTMT

l l
l

rr

r d dD
dr d r
φ ε φ εφ ε

φ
⋅= =
⋅

ϕ(ε3>ε2) 

ϕ(ε2>ε1) 

rMT 

ϕ(ε1) 

ϕ(ε0) 

D
(ε
)

ε

Vn Vn+1

Cn

−l−1

l

D{ϕl} is an ever-decreasing function 
of ε.  A pole appears whenever 
principal quantum number changes.

Value ε=Vl  at  D= l ~ ⇒ band bottom 
Value ε=Cl  at  D= −l−1 ⇒ band centre 



   APW and KKR Methods 

APW: Envelopes ⇒ plane waves  χG = ei(k+G).r as in the PW-PP method 
except χG is augmented inside each MT sphere with partial waves.  

KKR: Suppose the potential really is a MT.  Then it is solved exactly:


   (∇
2 + ε −VMT ) χ(ε ,r) = 0,     r > rMT

Family of Hankel functions HRL(r)=HL(r−R) at each site R:         
makes a nearly exact, minimal basis for the muffin-tin potential.

This is the KKR Method.


The ϕl(ε,r) join smoothly onto envelope 
functions in the interstitial.   

Envelope function χj  is “augmented” by 
ϕl(ε,r) in each augmentation sphere.


Helmholz equation: solns 
Hankels H and Bessels J 

χj  can be any functions that are 
reasonably complete in the interstitial.


ϕ 
χ 



Spherical Hankel and Bessel Functions 

Spherical Hankel and Bessel functions satisfy this equation: 

   

(∇2 + E){HL , JL}(E,r) = 0,     r ≠ 0
{HL , JL}(E,r) ={hl , jl}(E,r)YL(r̂)

Factor out 
angular 
dependence 

Hankels: singular as r→0, regular as r→∞   

  

hl (E,r)→ r− l−1e− −Er   as r →∞

jl (E,r)→ r le+ −Er   as r →∞

Radial part 

l=2 

l=1 

l=0 

hl 

r 

  r− l−1e− −Er   as r →∞

   
HL(E,r − R) = S(R − ′R , E)J ′L (E,r)

′L
∑

1  as 0lr r− − →

Bessels: regular as r→0, singular as r→∞   

Hankels can be expanded as a  
linear combination of Bessels 
around a remote site.  Called a 
one-center expansion: 

Structure constants 



KKR method in a nutshell 

For r < rMT, 

In the interstitial, solutions are linear combinations of atom-
centered Hankel functions HRL centered at each nucleus R.           

R1 R2 

HR1,L HR2,L 

ϕR1,L ϕR2,L 

    ΦRL(r) = CRLφRl (ε ,r)YL(r − R! ),
RL∑ We have piecewise solutions of the 

SE, with kinks matching HRL at  rMT . 
To satisfy boundary conditions, kinks must disappear 

rMT 



Linear Methods in Band Theory 

Ole	Krogh	Andersen	

•  Linear	methods	in	band	theory	O.	K.	Andersen	Phys.	Rev.	B	12,	3060	(1975)	
•  Explicit,	First-Principles	Tight-Binding	Theory,	O.	K.	Andersen	and	O.	Jepsen	

Phys.	Rev.	Lett.	53,	2571	(1984).		See	also	Phys.	Rev.	B	34,	5253	(1986)	
•  Muffin-tin	orbitals	of	arbitrary	order,	O.	K.	Andersen	and	T.	Saha-Dasgupta	

Phys.	Rev.	B	62,	R16219	(2000)		and	also	chapter	in	Electronic	Structure	and	
Physical	Properties	of	Solids.	The	Use	of	the	LMTO	Method.		Easiest-to	read	
but	predecessor	of	NMTO:		Tank	&	Arcangeli,		Phys.	Stat.	Sol.	(b)	217,	89	

KKR excepted, nearly all 
modern electronic 

structure methods use 
linearization in some way 

6,500	citations		

Problem …  
APW & KKR ⇒  
energy dependent 
hamiltonians. 
Resolved by  
linearization 



Linearization 

   φl (ε ,r) = φl (εν ,r)+ (ε − εν ) !φl (ε ,r)+ ...

Linearize ϕl(ε) kink-cancellation ⇒ linear algebraic eigenvalue problem 
  APW → LAPW;  KKR → LMTO 

Key observation: partial wave ϕl(ε,r) in 
sphere varies smoothly and slowly with 
energy 

Gold	standard	 Efficient	

Energy dependence parameterized 
by log derivative function 

  P{φl (ε )}=W{φl (ε ),hl}/ W{φl (ε ), jl}
Or by potential function (they 
are related) 

ϕ(ε0) 
ϕ(ε1) 

ϕ(ε3) 
ϕ(ε2) 

s=rMT 

{ ( )} ln ( ) / lnl lD d d rφ ε φ ε=



Present version of Full-Potential LDA code (lmf)	
All-electron LDA code  
  
1. Unique basis functions: 
smooth Hankel functions 

Smooth & regular at origin 
Accurate, small basis 

2. Novel Augmentation similar 
in philosophy to PAW but 
keeps rigor of LAPW  
3. APW’s may be included: 
fusion of MTO+APW.      
PRB81, 125117 (2010) 
4. Front end for GW, QSGW 

LMTO: Hl ~ r−l−1 

Questaal 

r→ 



Smooth Hankel Functions I 

Regular Hankel functions :


Veff(r) 

r 

   (−∇
2 +V eff (r)− E) χ(E,r) = 0

nucleus 

Ø ∝1/rl+1 for small r … 

           singularity hard to manage

Ø are “too stiff” : real V(r) is not flat 

in interstitial. It would be better if  
χ satisfied a SE

with Veff(r) approaching a 
constant smoothly.  Functions HL 
are solutions to this equation


    (−∇
2 − E) H(E,rs;r) = 4πGL(rs;r)

  
V eff (r) = −4π

GL(rs;r)
HL(E,rs;r)

solve a “Schrodinger 
equation” with 
 The smoother G is, 

the smoother Veff.




Smooth Hankel Functions II 

The HL are smooth Hankel functions


: 

   
ĤL(E;q) =

−4π (iq)l YL(iq)
E − q2

    
ĤL(E,rs;q) =

−4π (iq)l YL(iq)e−4rs
2q2

E − q2

In q space, g has a width 1/(4rs)    ĝ(rs;q) = e−4rs
2q2

The Fourier transform of an ordinary 
Hankel function is 


The FT of HL is the product 
of HL and a Gaussian g: 


In r space, g has a width rs 

LMTO: Hl ~ r−l−1 

Hl*g ~ rl 

r→ 0 1.0 2.0 3.00

0.2

0.4

0.6

  g(rs;r) = e−(r /rs )2

HL(E,rs;r) is a convolution of HL* g and is smooth everywhere  


J. Math. Phys. 39, 3393 



Augmentation 
Standard LAPW and LMTO methods must augment (replace) the 
envelope function with radial solutions of the SE to very high l … 
something like l=8 to be accurate. 
Curious … because pseudopotential l-cutoffs are ~2. Yet there is 
a connection between augmentation and pseudopotentials.  Why? 
lmf uses a unique form of augmentation. 
The total density n is made of a superposition of 3 components: 
1.  Interstitial, or smooth density ni .  Not augmented!          

extends everywhere in space (analogous to PP or PAW method) 
2.  True density inside augmentation sphere R, n1RL 

3.  1-center (local) representation of the interstitial density, n2RL 

   
n(r) = ni (r)+ n1RL(r)− n2RL(r){ }

RL

Lmax

∑ These approximately cancel  
Inside augmentation spheres 



Augmentation II 
The potential has a similar “three-component” representation 

Vi  is calculated from ni only  
V1R is calculated from n1R only  
V2R is calculated from n2R only  

   
V (r) =Vi (r)+ V1RL(r)−V2RL(r)( )

RL

Lmax

∑

Each potential is computed (almost) independently of the others: 

No cross terms! 

Why is this better? 
Ø Cross terms are unwieldy 
Ø L convergence much faster than 
standard LAPW 
Ø Makes connection betw/ PP, PAW, 
and all-electron methods. 

GaN 

Ti 

Se 
lmax 

Er
ro

r i
n 

E 



Local orbitals 
Recall energy linearization 
common to (nearly) all 
methods  

Standard: In the LMTO method (and LAPW) methods we add new 
augmentation orbitals ϕRL=ϕRL(εν,r) and ∂ϕRL/∂ε .   Procedure: 

1.  Integrate ϕRL(εz,r) at some εz  

2.  Subtract a×ϕRL + b×∂ϕRL/∂ε  from ϕRL(εz,r) to make both value, 
slope vanish at rMT .  The resulting “local orbital” is completely 
confined to the augmentation sphere. 

3.  Add this orbital to the basis set.  Extends range of energy 
window which solves SE, and the cost of a larger basis. 

    

ΦRL(ε ,r) = φRl (ε ,r)YRL(r̂)
φRl (ε ,r) ≈φRl (εν ,r)+ (ε − εν ) φRl (εν ,r)+ ...

Important for high-accuracy calculations, esp GW 



Visitors 

lmf 

Questaal 

Response  
functions 

Repository 
    www.bitbucket.org/lmto/lm  

Web site 
www.questaal.org 

 
CCP9 

EPSRC 
 

ASA 

lmgw 
lmgwsc lmfdmft 

+CTQMC 

 
Simons  

Collaboration 
 

Summer Schools 
Hands-on workshops 

tbe 

CCP9 Flagship: Questaal suite 
Questaal is the previous CCP9 flagship (www.questaal.org) 

It is an integrated electronic structure package that combines: 

Funding 
sources 

DFT 

phonons GW,  
QSGW 

DMFT 

Outreach 

Validation 



Descendant of the Stuttgart LMTO method 

Ole	Krogh	Andersen	

Andersen	formulated	the	
LMTO	and	LAPW	methods.		
O.	K.	Andersen	Phys.	Rev.	B	
12,	3060	(1975).		
Pseudopotentials	are	also	
based	on	an	(approximate)	
linearization!	

Problem …  
APW & KKR ⇒  
energy dependent 
hamiltonians. 
Resolved by  
linearization 

Original LMTO-ASA was developed for the Stuttgart group. 
Package formed the backbone of many developments :  

LDA+U (Aninismov)  
Exact exchange (Kotani) 
All-electron GW (Aryasetiawan)  
Electron-phonon interactions, superconductivity (Lichtenstein) 

Full-potential version developed by Methfessel and MvS. 
Full-Potential GW, QSGW developed by Kotani, Faleev, MvS. 



Functionality 
DFT  

Full-Pot 

Questaal 

Response  
functions 

DFT  
ASA 

GW,  
QSGW 

DMFT phonons 

DFT 
Efficient basis set (Pashov) 
Magnetic linear response, CPA 

GW  
Add diagrams (Gruening, Cunningham) 
Improve efficiency (Pashov, Lueders)  
Schemes to improve accuracy 

Phonons  
Phonons, electron-phonon interaction 
in GW (Bononi, Laricchia) 

QSGW+DMFT 
Acharya and Jamet 

Response functions (BSE) 
Optical response, some magnetic susceptibility in MBPT 
Magnetic and spin susceptibility  in DMFT 



Accessiblity 
Make Questaal easily accessible w/ relatively low barriers to use 

• Web site with tutorials

• User interface can be simple or sophisticated

• Input files can be autogenerated (mostly)

• Ticketing system

• Code validation, e.g. Delta Codes project --- similar to best codes


Goal: competent nonspecialists able to perform routine calculations




Web site 
Modern, with many nice features.  

Each main code documented.   
Basic tutorials for functionality 
Mostly complete; still missing links Questaal 

www.questaal.org 

Web site built on Markdown (Kramdown) system  
Easily extended; intended for user community to add 
There is style manual for uniform look and feel 

We welcome contributions to the site (tutorials, new features), 
e.g. link to phononpy 

We hope you will help us identify problems with the web site! 
If there are mistakes or you can’t find something, let us know.  



Nearly Ultimate Basis: Jigsaw Puzzle Orbitals	

Idea: construct sophisticated envelope functions that “almost” 
solve the 1-particle SE without any diagonalization step. 

Use properties of Augmented wave basis 
⇒ near exact in augmentation spheres  

Recall MTO construction 
Inside MT, partial waves 
ϕRl is near exact. 
 
JPO’s do something similar 
but for real potentials 

2[ ( ) ]V ε ψ−∇ + −rSchrodinger equation  

Dimitar Pashov 

χR1,L χR2,L 

ϕR1,L ϕR2,L 

Jerome (next speaker) will show how reasonable envelope 
parameters can be automatically found.  But not optimum! 



Short-sightedness of JPO’s	
The JPO’s have the following very useful properties: 
1. Solves the SE with minimum 

number of basis functions for a 
given accuracy in the four 
dimensions (r,E) 

2. Very short ranged 
3. Atom centered with a fixed        

l character  

Correlations (other than plasmons) are 
mostly short ranged. Localized one-
particle basis are essential to exploit 
this physics 

Today these are normally Wannier functions or partial waves 
in augmentation spheres.  JPO’s will do the job much better. 



Properties of Jigsaw Puzzle Orbitals	

Example : d orbitals in an open zincblende structure 
Orbitals are very short ranged with nearly pure l=2 character 

1D model LMTO 

JPO 

exact 



Managing Four-Center Integrals in GW 

Eigenfunction: 

   

YK (r̂)YM (r̂) =

CKLML∑ YL(r̂)

   ΦL(r)Φ ′L (r) = φl (r)φl (r)×Y ′L (r̂)Y ′L (r̂)

   e− i(k+ ′G )⋅r × ei(k+G)⋅r = e− i(G− ′G )⋅rInterstitial :   

Augmentation   

Numerical 
solution 

Products 
of YL  

   PG1

k1 (r)× PG2

k2 (r) = PG1+G2

k1+k2 (r)

( ) ( ) ( ),n n
n Ru Ru

Ru
Pψ α β= Φ +∑ ∑k k k k

k G G
G

r r r

The LDA works with products of basis function pairs, e.g. to make 
potential matrix elements 〈χi | V |χj〉 or n(r). 	

   
PG

k (r) =
0 if r ∈any MT
exp(i(k +G) ⋅r) otherwise

⎧
⎨
⎪

⎩⎪

GW and HF are more complicated.  They require 4-center 
integrals with 2 basis functions of r and two functions of r′ for 
two-point quantities, e.g. vijkl =〈 ψi ψj  | 1/|r−r′|  | ψk ψl 〉  



Product Basis 

R is a site index; u is a compound index which contains : L, label 
whether partial wave is ϕRL  or  ∂ϕRL/∂E  or local orbital character. 

In practice we must work with Bloch sums BI
(k)  of the BI . 

Thus, the mixed basis completely spans the Hilbert space of 
basis function products    {M I

k (r)}≡{PG
k (r), BRN

k (r)}

Interstitial: use     PG1

k1 (r)× PG2

k2 (r) = PG1+G2

k1+k2 (r),      PG
k = ei(k+G)⋅r

Augmentation: Construct complete set 
of product functions BN(r):     

{ϕRu (r)×ϕR ′u (r)} 
spanned by BN (r)

The MI are not orthogonal so we must orthonormalize 

    
| !M I

k 〉 ≡ |
′I
∑ M ′I

k 〉(Ok ) ′I I
−1 ,     O ′I I

k = 〈M ′I
k | M I

k 〉.



Input required to make the Self-Energy 
The bare coulomb operator can 
be expanded in the mixed basis: 

Complete information to generate the GW self-energy : 

    
v(r, ′r ) = |

k ,I ,J
∑ !M I

k (r)〉vIJ (k)〈 !M J
k ( ′r ) |

Similarly for all 2-point quantities, e.g. the dielectric function ε 
and screened coulomb interaction W(r, r′, ω).   

1. α & β  parameterizing 
eigenfn and eigenvalues 

   vIJ (k) ≡ 〈M I
k | v | M J

k 〉

   
ψ kn(r) = α Ru

kn

Ru
∑ ΦRu

k (r)+ βG
kn

G
∑ PG

k (r),    εkn

2. Matrix elements mapping to the product basis    〈Ψqn |Ψq−k ′n M I
k 〉

3. Overlap of the product basis    O ′I I
k = 〈M ′I

k | M I
k 〉

4. The coulomb matrix 

Augmented 
part + IPW 
part 



Fock Exchange and RPA polarizability 
Matrix elements of Fock exchange integrals in the mixed basis: 

    
〈Ψqn |Σx |Ψqm 〉 = − 〈Ψqn |Ψq−k ′n

!M I
k 〉vIJ (k)〈 !M J

kΨq−k ′n |Ψqm 〉
IJ
∑

′n

occ

∑
k

BZ

∑

Matrix elements of 
RPA polarizability 

    

PIJ (q,ω ) =
〈 !M I

qΨkn |Ψq+k ′n 〉〈Ψq+k ′n |Ψkn
!M J

q 〉
ω − (εq+k ′n − εkn )+ iδ

+
〈 !M I

qΨkn |Ψq+k ′n 〉〈Ψq+k ′n |Ψkn
!M J

q 〉
−ω − (εkn − εq+k ′n )+ iδ

Matrix elements of 
Screened Coulomb 
interaction 

Correlation part of self-energy can be calculated from WIJ . 
See Phys. Rev. B76, 165106. 

   
WIJ (q,ω ) = v(q)[1− v(q)P(q,ω )]−1{ }

IJ



CCP9 Flagship structure	

Strong  
Correlations 

QSGW+DMFT  
+BSE 

 

Community  
Code 

GW+ 
electron- 
phonon 

GW+Ladders 
  ε(ω) & Σ(ω)  

Acharya 
Jamet 
Weber 

Gruening 
Cunningham 

LDA (lmf) +  
QSGW (FP-GW) Jackson 

Petit  

Bonini 
Laricchia 

Other, e.g.  
ASA-GF Ness 

Belaschenko 


