Recently, Brian Cunningham and Myrta Gruening incorporated ladder diagrams as an extension to the RPA polarizability. Ladder diagrams significantly improve agreement with experimental dielectric response functions. The QSGW framework makes it possible to address systems whose electronic structure is poorly described within the standard perturbative GW approaches with as a starting point density-functional theory calculations. The Figure shows the real and imaginary parts of the dielectric function for Ge.

Metal-organic perovskite solar cells, CH3NH3PbI3 (MAPI) in particular, have attracted much attention recently because of their high power conversion efficiency and potential low cost.

Density-Functional theory, while being immensely popular thanks to its simplicity, nevertheless is limited in its reliability. The QuasiParticle Self-Consistent GW approximation, while more demanding than DFT, is vastly more reliable than DFT, or GW theory based on DFT, for calculation of optical properties in weakly correlated systems.

Many spintronic devices to emerge in recent years consist of spin transport through alternating, nanosized metallic layers

A new concept for very fast electronic devices has emerged in recent years. Called JMRAM, it relies on the rotation of the phase of a Cooper pair wave function when it passes through a thin magnetic layer.