Anisotropic Plasmonic CuS Nanocrystals as a Natural Electronic Material with Hyperbolic Optical Dispersion

State-of-the-art calculation of the electronic and optical properties of the newly emerging thermal transport semiconductor boron arsenide

October 30, 2018 | PAPERS · NONEQUILIBRIUM GREEN'S FUNCTIONS

We have demonstrated the feasibility of calculating the spin-orbit torques in layered systems within density-functional theory, augmented by an Anderson model to treat disorder. Terms beyond the usual damping-like and ﬁeld-like torques were found. While the torques that contribute to damping are almost entirely due to spin-orbit coupling on the Pt atoms, the field-like torque does not require it.

The Quasiparticle Self-Consistent GW approximation is combined with Dynamical Mean Field theory (DMFT). It is shown that by varying the positions of apical oxygen atoms, a metal-insulator transition can be induced in La2CuO4. This work also shows that optical conductivity can be well predicted by the theory and shows how spin and charge susceptibilities and the superconducting pairing order parameter, vary with the apical O displacement. QSGW+DMFT provides a new approach to handle strong correlations with predictive capability greatly superior to conventional methods such as DFT+DMFT.

Metal-organic perovskite solar cells, CH3NH3PbI3 (MAPI) in particular, have attracted much attention recently because of their high power conversion efficiency and potential low cost.

Density-Functional theory, while being immensely popular thanks to its simplicity, nevertheless is limited in its reliability. The QuasiParticle Self-Consistent GW approximation, while more demanding than DFT, is vastly more reliable than DFT, or GW theory based on DFT, for calculation of optical properties in weakly correlated systems.

Many spintronic devices to emerge in recent years consist of spin transport through alternating, nanosized metallic layers

A new concept for very fast electronic devices has emerged in recent years. Called JMRAM, it relies on the rotation of the phase of a Cooper pair wave function when it passes through a thin magnetic layer.

A new concept for very fast electronic devices has emerged in recent years. Called JMRAM, it relies on the rotation of the phase of a Cooper pair wave function when it passes through a thin magnetic layer.

Many spintronic devices to emerge in recent years consist of spin transport through alternating, nanosized metallic layers

The Quasiparticle Self-Consistent GW approximation is combined with Dynamical Mean Field theory (DMFT). It is shown that by varying the positions of apical oxygen atoms, a metal-insulator transition can be induced in La2CuO4. This work also shows that optical conductivity can be well predicted by the theory and shows how spin and charge susceptibilities and the superconducting pairing order parameter, vary with the apical O displacement. QSGW+DMFT provides a new approach to handle strong correlations with predictive capability greatly superior to conventional methods such as DFT+DMFT.

Density-Functional theory, while being immensely popular thanks to its simplicity, nevertheless is limited in its reliability. The QuasiParticle Self-Consistent GW approximation, while more demanding than DFT, is vastly more reliable than DFT, or GW theory based on DFT, for calculation of optical properties in weakly correlated systems.

Anisotropic Plasmonic CuS Nanocrystals as a Natural Electronic Material with Hyperbolic Optical Dispersion

State-of-the-art calculation of the electronic and optical properties of the newly emerging thermal transport semiconductor boron arsenide

Metal-organic perovskite solar cells, CH3NH3PbI3 (MAPI) in particular, have attracted much attention recently because of their high power conversion efficiency and potential low cost.

The Lambrecht group at Case Western University estimated how phonons modify the band structure in SrTiO3. Isolating the Frolich part of the electron-phonon interaction (which is the dominant contribution for highly polar compounds), they estimated the reduction in the screened coulomb interaction W, and its effect on the QSGW band structure.

Recently, Brian Cunningham and Myrta Gruening incorporated ladder diagrams as an extension to the RPA polarizability. Ladder diagrams significantly improve agreement with experimental dielectric response functions. The QSGW framework makes it possible to address systems whose electronic structure is poorly described within the standard perturbative GW approaches with as a starting point density-functional theory calculations. The Figure shows the real and imaginary parts of the dielectric function for Ge.

We are pleased to announce the 3rd Daresbury Questaal school. It will take place 13-17 May 2019, at Daresbury Laboratory, UK. This is an opportunity for researchers to learn about advanced electronic structure and gain hands-on experience with Questaal's DFT/QSGW/BSE/DMFT functionality. The event is free to attend and local accommodation will be provided.

A hands-on course highlighting Questaal's GW/DMFT/BSE capability. This is an opportunity for researchers to learn about advanced electronic structure and how to use the Questaal Suite.

The Lambrecht group at Case Western University estimated how phonons modify the band structure in SrTiO3. Isolating the Frolich part of the electron-phonon interaction (which is the dominant contribution for highly polar compounds), they estimated the reduction in the screened coulomb interaction W, and its effect on the QSGW band structure.

Recently, Brian Cunningham and Myrta Gruening incorporated ladder diagrams as an extension to the RPA polarizability. Ladder diagrams significantly improve agreement with experimental dielectric response functions. The QSGW framework makes it possible to address systems whose electronic structure is poorly described within the standard perturbative GW approaches with as a starting point density-functional theory calculations. The Figure shows the real and imaginary parts of the dielectric function for Ge.

Recently, Brian Cunningham and Myrta Gruening incorporated ladder diagrams as an extension to the RPA polarizability. Ladder diagrams significantly improve agreement with experimental dielectric response functions. The QSGW framework makes it possible to address systems whose electronic structure is poorly described within the standard perturbative GW approaches with as a starting point density-functional theory calculations. The Figure shows the real and imaginary parts of the dielectric function for Ge.

The Lambrecht group at Case Western University estimated how phonons modify the band structure in SrTiO3. Isolating the Frolich part of the electron-phonon interaction (which is the dominant contribution for highly polar compounds), they estimated the reduction in the screened coulomb interaction W, and its effect on the QSGW band structure.

We are pleased to announce the 3rd Daresbury Questaal school. It will take place 13-17 May 2019, at Daresbury Laboratory, UK. This is an opportunity for researchers to learn about advanced electronic structure and gain hands-on experience with Questaal's DFT/QSGW/BSE/DMFT functionality. The event is free to attend and local accommodation will be provided.

A hands-on course highlighting Questaal's GW/DMFT/BSE capability. This is an opportunity for researchers to learn about advanced electronic structure and how to use the Questaal Suite.

We are pleased to announce the 3rd Daresbury Questaal school. It will take place 13-17 May 2019, at Daresbury Laboratory, UK. This is an opportunity for researchers to learn about advanced electronic structure and gain hands-on experience with Questaal's DFT/QSGW/BSE/DMFT functionality. The event is free to attend and local accommodation will be provided.

A hands-on course highlighting Questaal's GW/DMFT/BSE capability. This is an opportunity for researchers to learn about advanced electronic structure and how to use the Questaal Suite.

October 30, 2018 | PAPERS · NONEQUILIBRIUM GREEN'S FUNCTIONS

We have demonstrated the feasibility of calculating the spin-orbit torques in layered systems within density-functional theory, augmented by an Anderson model to treat disorder. Terms beyond the usual damping-like and ﬁeld-like torques were found. While the torques that contribute to damping are almost entirely due to spin-orbit coupling on the Pt atoms, the field-like torque does not require it.